» Articles » PMID: 19698933

Analysis of DNA Microarray Expression Data

Overview
Publisher Elsevier
Specialty Hematology
Date 2009 Aug 25
PMID 19698933
Citations 12
Authors
Affiliations
Soon will be listed here.
Abstract

DNA microarrays are powerful tools for studying biological mechanisms and for developing prognostic and predictive classifiers for identifying the patients who require treatment and are best candidates for specific treatments. Because microarrays produce so much data from each specimen, they offer great opportunities for discovery and great dangers or producing misleading claims. Microarray based studies require clear objectives for selecting cases and appropriate analysis methods. Effective analysis of microarray data, where the number of measured variables is orders of magnitude greater than the number of cases, requires specialized statistical methods which have recently been developed. Recent literature reviews indicate that serious problems of analysis exist a substantial proportion of publications. This manuscript attempts to provide a non-technical summary of the key principles of statistical design and analysis for studies that utilize microarray expression profiling.

Citing Articles

Deep learning assisted cancer disease prediction from gene expression data using WT-GAN.

Ravindran U, Gunavathi C BMC Med Inform Decis Mak. 2024; 24(1):311.

PMID: 39449042 PMC: 11515488. DOI: 10.1186/s12911-024-02712-y.


Cross-platform validation of a mouse blood gene signature for quantitative reconstruction of radiation dose.

Ghandhi S, Shuryak I, Ponnaiya B, Wu X, Garty G, Morton S Sci Rep. 2022; 12(1):14124.

PMID: 35986207 PMC: 9391341. DOI: 10.1038/s41598-022-18558-1.


Unique transcriptomic response to sepsis is observed among patients of different age groups.

Raymond S, Lopez M, Baker H, Larson S, Efron P, Sweeney T PLoS One. 2017; 12(9):e0184159.

PMID: 28886074 PMC: 5590890. DOI: 10.1371/journal.pone.0184159.


Neutrophil chemotaxis and transcriptomics in term and preterm neonates.

Raymond S, Mathias B, Murphy T, Rincon J, Lopez M, Ungaro R Transl Res. 2017; 190:4-15.

PMID: 28873345 PMC: 5705589. DOI: 10.1016/j.trsl.2017.08.003.


Hybrid Binary Imperialist Competition Algorithm and Tabu Search Approach for Feature Selection Using Gene Expression Data.

Wang S, AORIGELE , Kong W, Zeng W, Hong X Biomed Res Int. 2016; 2016:9721713.

PMID: 27579323 PMC: 4989135. DOI: 10.1155/2016/9721713.


References
1.
Irizarry R, Wu Z, Jaffee H . Comparison of Affymetrix GeneChip expression measures. Bioinformatics. 2006; 22(7):789-94. DOI: 10.1093/bioinformatics/btk046. View

2.
Simon R . Development and validation of therapeutically relevant multi-gene biomarker classifiers. J Natl Cancer Inst. 2005; 97(12):866-7. DOI: 10.1093/jnci/dji168. View

3.
Bast Jr R, Ravdin P, Hayes D, Bates S, Fritsche Jr H, Jessup J . 2000 update of recommendations for the use of tumor markers in breast and colorectal cancer: clinical practice guidelines of the American Society of Clinical Oncology. J Clin Oncol. 2001; 19(6):1865-78. DOI: 10.1200/JCO.2001.19.6.1865. View

4.
Simon R, Maitournam A . Evaluating the efficiency of targeted designs for randomized clinical trials. Clin Cancer Res. 2004; 10(20):6759-63. DOI: 10.1158/1078-0432.CCR-04-0496. View

5.
Jansen M, Foekens J, van Staveren I, Dirkzwager-Kiel M, Ritstier K, Look M . Molecular classification of tamoxifen-resistant breast carcinomas by gene expression profiling. J Clin Oncol. 2005; 23(4):732-40. DOI: 10.1200/JCO.2005.05.145. View