» Articles » PMID: 19686657

On the Use of Ripley's K-function and Its Derivatives to Analyze Domain Size

Overview
Journal Biophys J
Publisher Cell Press
Specialty Biophysics
Date 2009 Aug 19
PMID 19686657
Citations 108
Authors
Affiliations
Soon will be listed here.
Abstract

Ripley's K-, H-, and L-functions are used increasingly to identify clustering of proteins in membrane microdomains. In this approach, aggregation (or clustering) is identified if the average number of proteins within a distance r of another protein is statistically greater than that expected for a random distribution. However, it is not entirely clear how the function may be used to quantitatively determine the size of domains in which clustering occurs. Here, we evaluate the extent to which the domain radius can be determined by different interpretations of Ripley's K-statistic in a theoretical, idealized context. We also evaluate the measures for noisy experimental data and use Monte Carlo simulations to separate the effects of different types of experimental noise. We find that the radius of maximal aggregation approximates the domain radius, while identifying the domain boundary with the minimum of the derivative of H(r) is highly accurate in idealized conditions. The accuracy of both measures is impacted by the noise present in experimental data; for example, here, the presence of a large fraction of particles distributed as monomers and interdomain interactions. These findings help to delineate the limitations and potential of Ripley's K in real-life scenarios.

Citing Articles

Disentangling the feedback loops driving spatial patterning in microbial communities.

Henderson A, Del Panta A, Schubert O, Mitri S, van Vliet S NPJ Biofilms Microbiomes. 2025; 11(1):32.

PMID: 39979272 PMC: 11842706. DOI: 10.1038/s41522-025-00666-1.


Hexagons all the way down: grid cells as a conformal isometric map of space.

Schoyen V, Beshkov K, Pettersen M, Hermansen E, Holzhausen K, Malthe-Sorenssen A PLoS Comput Biol. 2025; 21(2):e1012804.

PMID: 39946498 PMC: 11841915. DOI: 10.1371/journal.pcbi.1012804.


Simulation and quantitative analysis of spatial centromere distribution patterns.

Keikhosravi A, Guin K, Pegoraro G, Misteli T bioRxiv. 2025; .

PMID: 39896519 PMC: 11785228. DOI: 10.1101/2025.01.22.634320.


CFTR dictates monocyte adhesion by facilitating integrin clustering but not activation.

Younis D, Marosvari M, Liu W, Pulikkot S, Cao Z, Zhou B Proc Natl Acad Sci U S A. 2025; 122(3):e2412717122.

PMID: 39813254 PMC: 11760921. DOI: 10.1073/pnas.2412717122.


Increased spatial coupling of integrin and collagen IV in the immunoresistant clear-cell renal-cell carcinoma tumor microenvironment.

Soupir A, Hayes M, Peak T, Ospina O, Chakiryan N, Berglund A Genome Biol. 2024; 25(1):308.

PMID: 39639369 PMC: 11622564. DOI: 10.1186/s13059-024-03435-z.


References
1.
Plowman S, Muncke C, Parton R, Hancock J . H-ras, K-ras, and inner plasma membrane raft proteins operate in nanoclusters with differential dependence on the actin cytoskeleton. Proc Natl Acad Sci U S A. 2005; 102(43):15500-5. PMC: 1266090. DOI: 10.1073/pnas.0504114102. View

2.
Lillemeier B, Pfeiffer J, Surviladze Z, Wilson B, Davis M . Plasma membrane-associated proteins are clustered into islands attached to the cytoskeleton. Proc Natl Acad Sci U S A. 2006; 103(50):18992-7. PMC: 1681352. DOI: 10.1073/pnas.0609009103. View

3.
Kiyokawa E, Baba T, Otsuka N, Makino A, Ohno S, Kobayashi T . Spatial and functional heterogeneity of sphingolipid-rich membrane domains. J Biol Chem. 2005; 280(25):24072-84. DOI: 10.1074/jbc.M502244200. View

4.
Sharma P, Varma R, Sarasij R, Ira , Gousset K, Krishnamoorthy G . Nanoscale organization of multiple GPI-anchored proteins in living cell membranes. Cell. 2004; 116(4):577-89. DOI: 10.1016/s0092-8674(04)00167-9. View

5.
Pelkmans L, Zerial M . Kinase-regulated quantal assemblies and kiss-and-run recycling of caveolae. Nature. 2005; 436(7047):128-33. DOI: 10.1038/nature03866. View