» Articles » PMID: 19660130

R/BHC: Fast Bayesian Hierarchical Clustering for Microarray Data

Overview
Publisher Biomed Central
Specialty Biology
Date 2009 Aug 8
PMID 19660130
Citations 25
Authors
Affiliations
Soon will be listed here.
Abstract

Background: Although the use of clustering methods has rapidly become one of the standard computational approaches in the literature of microarray gene expression data analysis, little attention has been paid to uncertainty in the results obtained.

Results: We present an R/Bioconductor port of a fast novel algorithm for Bayesian agglomerative hierarchical clustering and demonstrate its use in clustering gene expression microarray data. The method performs bottom-up hierarchical clustering, using a Dirichlet Process (infinite mixture) to model uncertainty in the data and Bayesian model selection to decide at each step which clusters to merge.

Conclusion: Biologically plausible results are presented from a well studied data set: expression profiles of A. thaliana subjected to a variety of biotic and abiotic stresses. Our method avoids several limitations of traditional methods, for example how many clusters there should be and how to choose a principled distance metric.

Citing Articles

Bayesian cluster analysis.

Wade S Philos Trans A Math Phys Eng Sci. 2023; 381(2247):20220149.

PMID: 36970819 PMC: 10041359. DOI: 10.1098/rsta.2022.0149.


Understanding the nature of face processing in early autism: A prospective study.

Tye C, Bussu G, Gliga T, Elsabbagh M, Pasco G, Johnsen K J Psychopathol Clin Sci. 2022; 131(6):542-555.

PMID: 35901386 PMC: 9330670. DOI: 10.1037/abn0000648.


Transcriptome Analysis of Schwann Cells at Various Stages of Myelination Implicates Chromatin Regulator Sin3A in Control of Myelination Identity.

Zhang B, Su W, Hu J, Xu J, Askar P, Bao S Neurosci Bull. 2022; 38(7):720-740.

PMID: 35397705 PMC: 9276879. DOI: 10.1007/s12264-022-00850-9.


New confinement index and new perspective for comparing countries - COVID-19.

da Costa J, Garcia A Comput Methods Programs Biomed. 2021; 210:106346.

PMID: 34464767 PMC: 8418097. DOI: 10.1016/j.cmpb.2021.106346.


Revealing nuclear receptor hub modules from Basal-like breast cancer expression networks.

Hsu S, Hui E, Liu M, Wu D, Hughes T, Smith J PLoS One. 2021; 16(6):e0252901.

PMID: 34161324 PMC: 8221501. DOI: 10.1371/journal.pone.0252901.


References
1.
Kerr M, Churchill G . Bootstrapping cluster analysis: assessing the reliability of conclusions from microarray experiments. Proc Natl Acad Sci U S A. 2001; 98(16):8961-5. PMC: 55356. DOI: 10.1073/pnas.161273698. View

2.
Yeung K, Haynor D, Ruzzo W . Validating clustering for gene expression data. Bioinformatics. 2001; 17(4):309-18. DOI: 10.1093/bioinformatics/17.4.309. View

3.
Beaumont M, Rannala B . The Bayesian revolution in genetics. Nat Rev Genet. 2004; 5(4):251-61. DOI: 10.1038/nrg1318. View

4.
Rasmussen C, de la Cruz B, Ghahramani Z, Wild D . Modeling and visualizing uncertainty in gene expression clusters using dirichlet process mixtures. IEEE/ACM Trans Comput Biol Bioinform. 2009; 6(4):615-28. DOI: 10.1109/TCBB.2007.70269. View

5.
Jelenska J, Yao N, Vinatzer B, Wright C, Brodsky J, Greenberg J . A J domain virulence effector of Pseudomonas syringae remodels host chloroplasts and suppresses defenses. Curr Biol. 2007; 17(6):499-508. PMC: 1857343. DOI: 10.1016/j.cub.2007.02.028. View