» Articles » PMID: 19596482

What Controls Nucleosome Positions?

Overview
Journal Trends Genet
Specialty Genetics
Date 2009 Jul 15
PMID 19596482
Citations 196
Authors
Affiliations
Soon will be listed here.
Abstract

The DNA of eukaryotic genomes is wrapped in nucleosomes, which strongly distort and occlude the DNA from access to most DNA-binding proteins. An understanding of the mechanisms that control nucleosome positioning along the DNA is thus essential to understanding the binding and action of proteins that carry out essential genetic functions. New genome-wide data on in vivo and in vitro nucleosome positioning greatly advance our understanding of several factors that can influence nucleosome positioning, including DNA sequence preferences, DNA methylation, histone variants and post-translational modifications, higher order chromatin structure, and the actions of transcription factors, chromatin remodelers and other DNA-binding proteins. We discuss how these factors function and ways in which they might be integrated into a unified framework that accounts for both the preservation of nucleosome positioning and the dynamic nucleosome repositioning that occur across biological conditions, cell types, developmental processes and disease.

Citing Articles

DNAcycP2: improved estimation of intrinsic DNA cyclizability through data augmentation.

Kendall B, Jin C, Li K, Ruan F, Wang X, Wang J Nucleic Acids Res. 2025; 53(5).

PMID: 40071933 PMC: 11897897. DOI: 10.1093/nar/gkaf145.


An integrated machine-learning model to predict nucleosome architecture.

Sala A, Labrador M, Buitrago D, De Jorge P, Battistini F, Heath I Nucleic Acids Res. 2024; 52(17):10132-10143.

PMID: 39162225 PMC: 11417389. DOI: 10.1093/nar/gkae689.


Genome-wide nucleosome and transcription factor responses to genetic perturbations reveal chromatin-mediated mechanisms of transcriptional regulation.

Moyung K, Li Y, Hartemink A, MacAlpine D bioRxiv. 2024; .

PMID: 38826400 PMC: 11142231. DOI: 10.1101/2024.05.24.595391.


Evolutionary Dynamics of Chromatin Structure and Duplicate Gene Expression in Diploid and Allopolyploid Cotton.

Hu G, Grover C, Vera D, Lung P, Girimurugan S, Miller E Mol Biol Evol. 2024; 41(5).

PMID: 38758089 PMC: 11140268. DOI: 10.1093/molbev/msae095.


Employing bimodal representations to predict DNA bendability within a self-supervised pre-trained framework.

Yang M, Zhang S, Zheng Z, Zhang P, Liang Y, Tang S Nucleic Acids Res. 2024; 52(6):e33.

PMID: 38375921 PMC: 11014357. DOI: 10.1093/nar/gkae099.


References
1.
Field Y, Fondufe-Mittendorf Y, Moore I, Mieczkowski P, Kaplan N, Lubling Y . Gene expression divergence in yeast is coupled to evolution of DNA-encoded nucleosome organization. Nat Genet. 2009; 41(4):438-45. PMC: 2744203. DOI: 10.1038/ng.324. View

2.
McArthur M, Thomas J . A preference of histone H1 for methylated DNA. EMBO J. 1996; 15(7):1705-14. PMC: 450082. View

3.
Fraser R, Allan J, Simmen M . In silico approaches reveal the potential for DNA sequence-dependent histone octamer affinity to influence chromatin structure in vivo. J Mol Biol. 2006; 364(4):582-98. DOI: 10.1016/j.jmb.2006.08.092. View

4.
Lomvardas S, Thanos D . Modifying gene expression programs by altering core promoter chromatin architecture. Cell. 2002; 110(2):261-71. DOI: 10.1016/s0092-8674(02)00822-x. View

5.
Morgan B, Mittman B, Smith M . The highly conserved N-terminal domains of histones H3 and H4 are required for normal cell cycle progression. Mol Cell Biol. 1991; 11(8):4111-20. PMC: 361224. DOI: 10.1128/mcb.11.8.4111-4120.1991. View