» Articles » PMID: 19583789

Subseafloor Microbial Communities Associated with Rapid Turbidite Deposition in the Gulf of Mexico Continental Slope (IODP Expedition 308)

Overview
Date 2009 Jul 9
PMID 19583789
Citations 16
Authors
Affiliations
Soon will be listed here.
Abstract

The subseafloor microbial communities in the turbidite depositional basins Brazos-Trinity Basin IV (BT Basin) and the Mars-Ursa Basin (Ursa Basin) on the Gulf of Mexico continental slope (IODP holes U1319A, U1320A, U1322B and U1324B) were investigated by PCR-dependent molecular analyses targeted to the small subunit (SSU) rRNA genes, dsrA and mcrA, and hydrogenase activity measurements. Biomass at both basins was very low, with the maximum cell or the SSU rRNA gene copy number <1 x 10(7) cells mL(-1) or copies g(-1) sediments, respectively. Hydrogenase activity correlated with biomass estimated by SSU rRNA gene copy number when all data sets were combined. We detected differences in the SSU rRNA gene community structures and SSU rRNA gene copy numbers between the basin-fill and basement sediments in the BT Basin. Examination of microbial communities and hydrogenase activity in the context of geochemical and geophysical parameters and sediment depositional environments revealed that differences in microbial community composition between the basin-fill and basement sediments in the BT Basin were associated with sedimentation regimes tied to the sea-level change. This may also explain the distributions of relatively similar archaeal communities in the Ursa Basin sediments and basement sediments in the BT Basin.

Citing Articles

Community Composition and Functional Characterization of Microorganisms in Surface Sediment of the New Britain Trench.

Hu L, Wang Z, Wang Z, Wang L, Fang J, Liu R Curr Microbiol. 2024; 81(9):282.

PMID: 39060557 DOI: 10.1007/s00284-024-03810-w.


Impact of Terrestrial Input on Deep-Sea Benthic Archaeal Community Structure in South China Sea Sediments.

Lai D, Hedlund B, Xie W, Liu J, Phelps T, Zhang C Front Microbiol. 2020; 11:572017.

PMID: 33224115 PMC: 7674655. DOI: 10.3389/fmicb.2020.572017.


Assessing the Diversity of Benthic Sulfate-Reducing Microorganisms in Northwestern Gulf of Mexico by Illumina Sequencing of dsrB Gene.

Sanchez-Soto M, Cerqueda-Garcia D, Alcantara-Hernandez R, Falcon L, Pech D, Arcega-Cabrera F Microb Ecol. 2020; 81(4):908-921.

PMID: 33196853 DOI: 10.1007/s00248-020-01631-5.


Single-Cell Genome and Group-Specific dsrAB Sequencing Implicate Marine Members of the Class Dehalococcoidia (Phylum Chloroflexi) in Sulfur Cycling.

Wasmund K, Cooper M, Schreiber L, Lloyd K, Baker B, Petersen D mBio. 2016; 7(3).

PMID: 27143384 PMC: 4959651. DOI: 10.1128/mBio.00266-16.


Hydrogen Utilization Potential in Subsurface Sediments.

Adhikari R, Glombitza C, Nickel J, Anderson C, Dunlea A, Spivack A Front Microbiol. 2016; 7:8.

PMID: 26858697 PMC: 4726784. DOI: 10.3389/fmicb.2016.00008.