Human ISL1 Heart Progenitors Generate Diverse Multipotent Cardiovascular Cell Lineages
Authors
Affiliations
The generation and expansion of diverse cardiovascular cell lineages is a critical step during human cardiogenesis, with major implications for congenital heart disease. Unravelling the mechanisms for the diversification of human heart cell lineages has been hampered by the lack of genetic tools to purify early cardiac progenitors and define their developmental potential. Recent studies in the mouse embryo have identified a multipotent cardiac progenitor that contributes to all of the major cell types in the murine heart. In contrast to murine development, human cardiogenesis has a much longer onset of heart cell lineage diversification and expansion, suggesting divergent pathways. Here we identify a diverse set of human fetal ISL1(+) cardiovascular progenitors that give rise to the cardiomyocyte, smooth muscle and endothelial cell lineages. Using two independent transgenic and gene-targeting approaches in human embryonic stem cell lines, we show that purified ISL1(+) primordial progenitors are capable of self-renewal and expansion before differentiation into the three major cell types in the heart. These results lay the foundation for the generation of human model systems for cardiovascular disease and novel approaches for human regenerative cardiovascular medicine.
Pharmacologically inducing regenerative cardiac cells by small molecule drugs.
Zhou W, He K, Wang C, Wang P, Wang D, Wang B Elife. 2024; 13.
PMID: 39651957 PMC: 11627505. DOI: 10.7554/eLife.93405.
Lee W, Lin S, Chiang C, Chen J, Chieng W, Huang S Stem Cell Rev Rep. 2024; 20(8):2194-2214.
PMID: 39264501 PMC: 11554697. DOI: 10.1007/s12015-024-10774-8.
Deficient GATA6-CXCR7 signaling leads to bicuspid aortic valve.
Pineiro-Sabaris R, MacGrogan D, de la Pompa J Dis Model Mech. 2024; 17(9).
PMID: 39253784 PMC: 11413932. DOI: 10.1242/dmm.050934.
Beyond the Heartbeat: Single-Cell Omics Redefining Cardiovascular Research.
Seeler S, Arnarsson K, Dressen M, Krane M, Doppler S Curr Cardiol Rep. 2024; 26(11):1183-1196.
PMID: 39158785 DOI: 10.1007/s11886-024-02117-3.
Epigenetic Regulation of Mammalian Cardiomyocyte Development.
Mensah I, Gowher H Epigenomes. 2024; 8(3).
PMID: 39051183 PMC: 11270418. DOI: 10.3390/epigenomes8030025.