Huang Y, Zhang Y, Braun R
Chaos. 2023; 33(9).
PMID: 37669108
PMC: 10482494.
DOI: 10.1063/5.0157524.
Schmal C
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2023; 210(4):549-564.
PMID: 37659985
PMC: 11226496.
DOI: 10.1007/s00359-023-01669-z.
Laing C, Omelchenko O
Biol Cybern. 2023; 117(4-5):259-274.
PMID: 37535104
PMC: 10600056.
DOI: 10.1007/s00422-023-00969-6.
Mendonca H, Tonjes R, Pereira T
Entropy (Basel). 2023; 25(7).
PMID: 37509930
PMC: 10377925.
DOI: 10.3390/e25070983.
Duchet B, Bick C, Byrne A
Neural Comput. 2023; 35(9):1481-1528.
PMID: 37437202
PMC: 10422128.
DOI: 10.1162/neco_a_01601.
Critical brain wave dynamics of neuronal avalanches.
Galinsky V, Frank L
Front Phys. 2023; 11.
PMID: 37008648
PMC: 10063224.
DOI: 10.3389/fphy.2023.1138643.
Neuronal avalanches: Sandpiles of self-organized criticality or critical dynamics of brain waves?.
Galinsky V, Frank L
Front Phys (Beijing). 2023; 18(4).
PMID: 37008280
PMC: 10062440.
DOI: 10.1007/s11467-023-1273-7.
Spatial distribution of heterogeneity as a modulator of collective dynamics in pancreatic beta-cell networks and beyond.
Galvis D, Hodson D, Wedgwood K
Front Netw Physiol. 2023; 3.
PMID: 36987428
PMC: 7614376.
DOI: 10.3389/fnetp.2023.1170930.
Collective Activity Bursting in a Population of Excitable Units Adaptively Coupled to a Pool of Resources.
Franovic I, Eydam S, Yanchuk S, Berner R
Front Netw Physiol. 2023; 2:841829.
PMID: 36926089
PMC: 10013072.
DOI: 10.3389/fnetp.2022.841829.
Collective states in a ring network of theta neurons.
Omelchenko O, Laing C
Proc Math Phys Eng Sci. 2022; 478(2259):20210817.
PMID: 35280327
PMC: 8908473.
DOI: 10.1098/rspa.2021.0817.
Non-reciprocal phase transitions.
Fruchart M, Hanai R, Littlewood P, Vitelli V
Nature. 2021; 592(7854):363-369.
PMID: 33854249
DOI: 10.1038/s41586-021-03375-9.
Dynamics of Structured Networks of Winfree Oscillators.
Laing C, Blasche C, Means S
Front Syst Neurosci. 2021; 15:631377.
PMID: 33643004
PMC: 7902706.
DOI: 10.3389/fnsys.2021.631377.
Synaptic Diversity Suppresses Complex Collective Behavior in Networks of Theta Neurons.
Lin L, Barreto E, So P
Front Comput Neurosci. 2020; 14:44.
PMID: 32528269
PMC: 7264118.
DOI: 10.3389/fncom.2020.00044.
Understanding the dynamics of biological and neural oscillator networks through exact mean-field reductions: a review.
Bick C, Goodfellow M, Laing C, Martens E
J Math Neurosci. 2020; 10(1):9.
PMID: 32462281
PMC: 7253574.
DOI: 10.1186/s13408-020-00086-9.
Collective in-plane magnetization in a two-dimensional XY macrospin system within the framework of generalized Ott-Antonsen theory.
Tyulkina I, Goldobin D, Klimenko L, Poperechny I, Raikher Y
Philos Trans A Math Phys Eng Sci. 2020; 378(2171):20190259.
PMID: 32279627
PMC: 7202769.
DOI: 10.1098/rsta.2019.0259.
Anti-phase collective synchronization with intrinsic in-phase coupling of two groups of electrochemical oscillators.
Sebek M, Kawamura Y, Nott A, Kiss I
Philos Trans A Math Phys Eng Sci. 2019; 377(2160):20190095.
PMID: 31656145
PMC: 6833994.
DOI: 10.1098/rsta.2019.0095.
Twisted states in nonlocally coupled phase oscillators with frequency distribution consisting of two Lorentzian distributions with the same mean frequency and different widths.
Xie Y, Zhang L, Guo S, Dai Q, Yang J
PLoS One. 2019; 14(3):e0213471.
PMID: 30861016
PMC: 6413906.
DOI: 10.1371/journal.pone.0213471.
The mathematics of asymptotic stability in the Kuramoto model.
Dietert H, Fernandez B
Proc Math Phys Eng Sci. 2019; 474(2220):20180467.
PMID: 30602931
PMC: 6304033.
DOI: 10.1098/rspa.2018.0467.
Macroscopic models for networks of coupled biological oscillators.
Hannay K, Forger D, Booth V
Sci Adv. 2018; 4(8):e1701047.
PMID: 30083596
PMC: 6070363.
DOI: 10.1126/sciadv.1701047.
The Dynamics of Networks of Identical Theta Neurons.
Laing C
J Math Neurosci. 2018; 8(1):4.
PMID: 29404814
PMC: 5799134.
DOI: 10.1186/s13408-018-0059-7.