» Articles » PMID: 19533750

Epigenetic Silencing of Argininosuccinate Synthetase Confers Resistance to Platinum-induced Cell Death but Collateral Sensitivity to Arginine Auxotrophy in Ovarian Cancer

Overview
Journal Int J Cancer
Specialty Oncology
Date 2009 Jun 18
PMID 19533750
Citations 76
Authors
Affiliations
Soon will be listed here.
Abstract

Evidence indicates that acquired resistance of cancers to chemotherapeutic agents can occur via epigenetic mechanisms. Down-regulation of expression of argininosuccinate synthetase (ASS1), the rate-limiting enzyme in the biosynthesis of arginine, has been associated with the development of platinum resistance in ovarian cancer treated with platinum-based chemotherapy. The aim of the present study was to analyse epigenetic regulation of ASS1 in ovarian cancer tissue taken at diagnosis and relapse and determine its significance as a predictor of clinical outcome in patients treated with platinum-based chemotherapy. In addition, expression and epigenetic regulation of ASS1 were analysed in human ovarian cancer cell lines, and ASS1 expression correlated with the ability of the lines to grow in media containing cisplatin, carboplatin or taxol or in arginine-depleted media. Our results show that aberrant methylation in the ASS1 promoter correlated with transcriptional silencing in ovarian cancer cell lines. ASS1 silencing conferred selective resistance to platinum-based drugs and conferred arginine auxotrophy and sensitivity to arginine deprivation. In ovarian cancer, ASS1 methylation at diagnosis was associated with significantly reduced overall survival (p = 0.01) and relapse-free survival (p = 0.01). In patients who relapse, ASS1 methylation was significantly more frequent at relapse (p = 0.008). These data establish epigenetic inactivation of ASS1 as a determinant of response to platinum chemotherapy and imply that transcriptional silencing of ASS1 contributes to treatment failure and clinical relapse in ovarian cancer. The collateral sensitivity of cells lacking endogenous ASS1 to arginine depletion suggests novel therapeutic strategies for the management of relapsed ovarian cancer.

Citing Articles

Invasive lobular carcinoma integrated multi-omics analysis reveals silencing of Arginosuccinate synthase and upregulation of nucleotide biosynthesis in tamoxifen resistance.

Gupta A, Choueiry F, Reardon J, Pramod N, Kulkarni A, Shankar E bioRxiv. 2025; .

PMID: 39868332 PMC: 11761122. DOI: 10.1101/2025.01.16.633236.


Cisplatin Resistance and Metabolism: Simplification of Complexity.

Pervushin N, Yapryntseva M, Panteleev M, Zhivotovsky B, Kopeina G Cancers (Basel). 2024; 16(17).

PMID: 39272940 PMC: 11394643. DOI: 10.3390/cancers16173082.


PEGylated Recombinant Ink Toxin Depletes Arginine and Lysine and Inhibits the Growth of Tumor Xenografts.

Wolkersdorfer A, Bergmann B, Adelmann J, Ebbinghaus M, Gunther E, Gutmann M ACS Biomater Sci Eng. 2024; 10(6):3825-3832.

PMID: 38722049 PMC: 11168412. DOI: 10.1021/acsbiomaterials.4c00473.


Human arginase I: a potential broad-spectrum anti-cancer agent.

Anakha J, Prasad Y, Sharma N, Pande A 3 Biotech. 2023; 13(5):159.

PMID: 37152001 PMC: 10156892. DOI: 10.1007/s13205-023-03590-3.


Deregulated Metabolic Pathways in Ovarian Cancer: Cause and Consequence.

Murali R, Balasubramaniam V, Srinivas S, Sundaram S, Venkatraman G, Warrier S Metabolites. 2023; 13(4).

PMID: 37110218 PMC: 10141515. DOI: 10.3390/metabo13040560.