» Articles » PMID: 19533375

Histidine Side-chain Dynamics and Protonation Monitored by 13C CPMG NMR Relaxation Dispersion

Overview
Journal J Biomol NMR
Publisher Springer
Date 2009 Jun 18
PMID 19533375
Citations 6
Authors
Affiliations
Soon will be listed here.
Abstract

The use of 13C NMR relaxation dispersion experiments to monitor micro-millisecond fluctuations in the protonation states of histidine residues in proteins is investigated. To illustrate the approach, measurements on three specifically 13C labeled histidine residues in plastocyanin (PCu) from Anabaena variabilis (A.v.) are presented. Significant Carr-Purcell-Meiboom-Gill (CPMG) relaxation dispersion is observed for 13C(epsilon1) nuclei in the histidine imidazole rings of A.v. PCu. The chemical shift changes obtained from the CPMG dispersion data are in good agreement with those obtained from the chemical shift titration experiments, and the CPMG derived exchange rates agree with those obtained previously from 15N backbone relaxation measurements. Compared to measurements of backbone nuclei, 13C(epsilon1) dispersion provides a more direct method to monitor interchanging protonation states or other kinds of conformational changes of histidine side chains or their environment. Advantages and shortcomings of using the 13C(epsilon1) dispersion experiments in combination with chemical shift titration experiments to obtain information on exchange dynamics of the histidine side chains are discussed.

Citing Articles

Mobility of Histidine Side Chains Analyzed with N NMR Relaxation and Cross-Correlation Data: Insight into Zinc-Finger-DNA Interactions.

Kemme C, Luu R, Chen C, Pletka C, Pettitt B, Iwahara J J Phys Chem B. 2019; 123(17):3706-3710.

PMID: 30963768 PMC: 6501774. DOI: 10.1021/acs.jpcb.9b03132.


Active-Site pKa Determination for Photoactive Yellow Protein Rationalizes Slow Ground-State Recovery.

Oktaviani N, Pool T, Yoshimura Y, Kamikubo H, Scheek R, Kataoka M Biophys J. 2017; 112(10):2109-2116.

PMID: 28538148 PMC: 5443972. DOI: 10.1016/j.bpj.2017.04.008.


2D IR spectroscopy of histidine: probing side-chain structure and dynamics via backbone amide vibrations.

Ghosh A, Tucker M, Gai F J Phys Chem B. 2014; 118(28):7799-805.

PMID: 24712671 PMC: 4317052. DOI: 10.1021/jp411901m.


Limiting values of the 15N chemical shift of the imidazole ring of histidine at high pH.

Vila J J Phys Chem B. 2012; 116(23):6665-9.

PMID: 22376024 PMC: 3376251. DOI: 10.1021/jp211196r.


Comprehensive determination of protein tyrosine pKa values for photoactive yellow protein using indirect 13C NMR spectroscopy.

Oktaviani N, Pool T, Kamikubo H, Slager J, Scheek R, Kataoka M Biophys J. 2012; 102(3):579-86.

PMID: 22325281 PMC: 3274806. DOI: 10.1016/j.bpj.2011.12.024.


References
1.
Mandel M . PROTON MAGNETIC RESONANCE SPECTRA OF SOME PROTEINS. I. RIBONUCLEASE, OXIDIZED RIBONUCLEASE, LYSOZYME, AND CYTOCHROME C. J Biol Chem. 1965; 240:1586-92. View

2.
Hass M, Christensen H, Zhang J, Led J . Kinetics and mechanism of the acid transition of the active site in plastocyanin. Biochemistry. 2007; 46(50):14619-28. DOI: 10.1021/bi701446u. View

3.
Garcia-Mayoral M, Laurents D, Del Pozo A, Gavilanes J, Rico M, Bruix M . Tautomeric state of alpha-sarcin histidines. Ndelta tautomers are a common feature in the active site of extracellular microbial ribonucleases. FEBS Lett. 2003; 534(1-3):197-201. DOI: 10.1016/s0014-5793(02)03844-9. View

4.
Guss J, Harrowell P, Murata M, Norris V, Freeman H . Crystal structure analyses of reduced (CuI) poplar plastocyanin at six pH values. J Mol Biol. 1986; 192(2):361-87. DOI: 10.1016/0022-2836(86)90371-2. View

5.
Pelton J, Torchia D, Meadow N, Roseman S . Tautomeric states of the active-site histidines of phosphorylated and unphosphorylated IIIGlc, a signal-transducing protein from Escherichia coli, using two-dimensional heteronuclear NMR techniques. Protein Sci. 1993; 2(4):543-58. PMC: 2142369. DOI: 10.1002/pro.5560020406. View