» Articles » PMID: 19529830

Learning from Evolution: Thellungiella Generates New Knowledge on Essential and Critical Components of Abiotic Stress Tolerance in Plants

Overview
Journal Mol Plant
Publisher Cell Press
Date 2009 Jun 17
PMID 19529830
Citations 80
Authors
Affiliations
Soon will be listed here.
Abstract

Thellungiella salsuginea (halophila) is a close relative of Arabidopsis thaliana but, unlike A. thaliana, it grows well in extreme conditions of cold, salt, and drought as well as nitrogen limitation. Over the last decade, many laboratories have started to use Thellungiella to investigate the physiological, metabolic, and molecular mechanisms of abiotic stress tolerance in plants, and new knowledge has been gained in particular with respect to ion transport and gene expression. The advantage of Thellungiella over other extremophile model plants is that it can be directly compared with Arabidopsis, and therefore generate information on both essential and critical components of stress tolerance. Thellungiella research is supported by a growing body of technical resources comprising physiological and molecular protocols, ecotype collections, expressed sequence tags, cDNA-libraries, microarrays, and a pending genome sequence. This review summarizes the current state of knowledge on Thellungiella and re-evaluates its usefulness as a model for research into plant stress tolerance.

Citing Articles

Birch (Betula platyphylla) BES/BZR transcription factor BpBZR1-6 improves salt tolerance in transgenic Arabidopsis thaliana.

Chi Y, Yu M, Wang Z, Zhou M, Zhao L, Shi J BMC Plant Biol. 2024; 24(1):1136.

PMID: 39604893 PMC: 11603886. DOI: 10.1186/s12870-024-05738-6.


: A Halophyte Model to Study Salt Tolerance Mechanisms and Potential Useful Crop for Sustainable Saline Agriculture in the Context of Climate Change.

Mir R, Mircea D, Ruiz-Gonzalez M, Brocal-Rubio P, Boscaiu M, Vicente O Plants (Basel). 2024; 13(20).

PMID: 39458826 PMC: 11511379. DOI: 10.3390/plants13202880.


The Small Auxin-Up RNA 50 (SAUR50) Gene from Negatively Regulates Drought Tolerance.

Zhang Y, Li Q, Jiang M, Tian H, Khalid M, Wang Y Plants (Basel). 2024; 13(17).

PMID: 39273996 PMC: 11397199. DOI: 10.3390/plants13172512.


Analysis of Raffinose Synthase Gene Family in Bread Wheat and Identification of Drought Resistance and Salt Tolerance Function of .

Guo J, Yang Y, Wang T, Wang Y, Zhang X, Min D Int J Mol Sci. 2023; 24(13).

PMID: 37446364 PMC: 10342549. DOI: 10.3390/ijms241311185.


A high-quality chromosome-level Eutrema salsugineum genome, an extremophile plant model.

Xiao M, Hao G, Guo X, Feng L, Lin H, Yang W BMC Genomics. 2023; 24(1):174.

PMID: 37020189 PMC: 10077641. DOI: 10.1186/s12864-023-09256-x.


References
1.
Duan X, Yang A, Gao F, Zhang S, Zhang J . Heterologous expression of vacuolar H(+)-PPase enhances the electrochemical gradient across the vacuolar membrane and improves tobacco cell salt tolerance. Protoplasma. 2007; 232(1-2):87-95. DOI: 10.1007/s00709-007-0268-5. View

2.
Gong Q, Li P, Ma S, Rupassara S, Bohnert H . Salinity stress adaptation competence in the extremophile Thellungiella halophila in comparison with its relative Arabidopsis thaliana. Plant J. 2005; 44(5):826-39. DOI: 10.1111/j.1365-313X.2005.02587.x. View

3.
Bressan R, Zhang C, Zhang H, Hasegawa P, Bohnert H, Zhu J . Learning from the Arabidopsis experience. The next gene search paradigm. Plant Physiol. 2001; 127(4):1354-60. PMC: 1540162. View

4.
Li L, Kim B, Cheong Y, Pandey G, Luan S . A Ca(2)+ signaling pathway regulates a K(+) channel for low-K response in Arabidopsis. Proc Natl Acad Sci U S A. 2006; 103(33):12625-30. PMC: 1567929. DOI: 10.1073/pnas.0605129103. View

5.
Zhu J . Plant salt tolerance. Trends Plant Sci. 2001; 6(2):66-71. DOI: 10.1016/s1360-1385(00)01838-0. View