Jimenez-Pompa A, Albillos A
Int J Mol Sci. 2024; 25(4).
PMID: 38396980
PMC: 10888968.
DOI: 10.3390/ijms25042304.
Meganathan K, Prakasam R, Baldridge D, Gontarz P, Zhang B, Urano F
BMC Biol. 2021; 19(1):147.
PMID: 34320968
PMC: 8317352.
DOI: 10.1186/s12915-021-01080-7.
Scholze P, Huck S
Front Synaptic Neurosci. 2020; 12:607959.
PMID: 33343327
PMC: 7744819.
DOI: 10.3389/fnsyn.2020.607959.
Hong Y, Liang X, Gilhus N
Sci Rep. 2020; 10(1):11230.
PMID: 32641696
PMC: 7343820.
DOI: 10.1038/s41598-020-68185-x.
Rudell J, Borges L, Yarov-Yarovoy V, Ferns M
Front Mol Neurosci. 2020; 13:48.
PMID: 32265653
PMC: 7105636.
DOI: 10.3389/fnmol.2020.00048.
Agonist Selectivity and Ion Permeation in the α3β4 Ganglionic Nicotinic Receptor.
Gharpure A, Teng J, Zhuang Y, Noviello C, Walsh Jr R, Cabuco R
Neuron. 2019; 104(3):501-511.e6.
PMID: 31488329
PMC: 6842111.
DOI: 10.1016/j.neuron.2019.07.030.
Proteomic Investigation of Murine Neuronal α7-Nicotinic Acetylcholine Receptor Interacting Proteins.
Mulcahy M, Paulo J, Hawrot E
J Proteome Res. 2018; 17(11):3959-3975.
PMID: 30285449
PMC: 6301012.
DOI: 10.1021/acs.jproteome.8b00618.
Human brain imaging of nicotinic acetylcholine α4β2* receptors using [ F]Nifene: Selectivity, functional activity, toxicity, aging effects, gender effects, and extrathalamic pathways.
Mukherjee J, Lao P, Betthauser T, Samra G, Pan M, Patel I
J Comp Neurol. 2017; 526(1):80-95.
PMID: 28875553
PMC: 5788574.
DOI: 10.1002/cne.24320.
[ F]Nifene test-retest reproducibility in first-in-human imaging of α4β2* nicotinic acetylcholine receptors.
Lao P, Betthauser T, Tudorascu D, Barnhart T, Hillmer A, Stone C
Synapse. 2017; 71(8).
PMID: 28420041
PMC: 5541262.
DOI: 10.1002/syn.21981.
Isoform-specific mechanisms of α3β4*-nicotinic acetylcholine receptor modulation by the prototoxin lynx1.
George A, Bloy A, Miwa J, Lindstrom J, Lukas R, Whiteaker P
FASEB J. 2017; 31(4):1398-1420.
PMID: 28100642
PMC: 5349798.
DOI: 10.1096/fj.201600733R.
Probing the Allosteric Role of the α5 Subunit of α3β4α5 Nicotinic Acetylcholine Receptors by Functionally Selective Modulators and Ligands.
Ray C, Soderblom E, Bai Y, Carroll F, Caron M, Barak L
ACS Chem Biol. 2017; 12(3):702-714.
PMID: 28045487
PMC: 5417700.
DOI: 10.1021/acschembio.6b01117.
Astrocytic and microglial nicotinic acetylcholine receptors: an overlooked issue in Alzheimer's disease.
Sadigh-Eteghad S, Majdi A, Mahmoudi J, Golzari S, Talebi M
J Neural Transm (Vienna). 2016; 123(12):1359-1367.
PMID: 27262818
DOI: 10.1007/s00702-016-1580-z.
Lateral diffusion, function, and expression of the slow channel congenital myasthenia syndrome αC418W nicotinic receptor mutation with changes in lipid raft components.
Oyola-Cintron J, Caballero-Rivera D, Ballester L, Baez-Pagan C, Martinez H, Velez-Arroyo K
J Biol Chem. 2015; 290(44):26790-800.
PMID: 26354438
PMC: 4646332.
DOI: 10.1074/jbc.M115.678573.
Resistance to Inhibitors of Cholinesterase 3 (Ric-3) Expression Promotes Selective Protein Associations with the Human α7-Nicotinic Acetylcholine Receptor Interactome.
Mulcahy M, Blattman S, Barrantes F, Lukas R, Hawrot E
PLoS One. 2015; 10(8):e0134409.
PMID: 26258666
PMC: 4530945.
DOI: 10.1371/journal.pone.0134409.
Live Imaging of Nicotine Induced Calcium Signaling and Neurotransmitter Release Along Ventral Hippocampal Axons.
Zhong C, Talmage D, Role L
J Vis Exp. 2015; (100):e52730.
PMID: 26132461
PMC: 4544456.
DOI: 10.3791/52730.
Liquid general anesthetics lower critical temperatures in plasma membrane vesicles.
Gray E, Karslake J, Machta B, Veatch S
Biophys J. 2013; 105(12):2751-9.
PMID: 24359747
PMC: 3882514.
DOI: 10.1016/j.bpj.2013.11.005.
RIC-3 differentially modulates α4β2 and α7 nicotinic receptor assembly, expression, and nicotine-induced receptor upregulation.
Dau A, Komal P, Truong M, Morris G, Evans G, Nashmi R
BMC Neurosci. 2013; 14:47.
PMID: 23586521
PMC: 3637639.
DOI: 10.1186/1471-2202-14-47.
Aβ internalization by neurons and glia.
Mohamed A, de Chaves E
Int J Alzheimers Dis. 2011; 2011:127984.
PMID: 21350608
PMC: 3042623.
DOI: 10.4061/2011/127984.