» Articles » PMID: 19493348

The Evolution of Nuclear Auxin Signalling

Overview
Journal BMC Evol Biol
Publisher Biomed Central
Specialty Biology
Date 2009 Jun 5
PMID 19493348
Citations 60
Authors
Affiliations
Soon will be listed here.
Abstract

Background: The plant hormone auxin directs many aspects of plant growth and development. To understand the evolution of auxin signalling, we compared the genes encoding two families of crucial transcriptional regulators, AUXIN RESPONSE FACTOR (ARF) and AUXIN/INDOLE-3-ACETIC ACID (Aux/IAA), among flowering plants and two non-seed plants, Physcomitrella patens and Selaginella moellendorffii.

Results: Comparative analysis of the P. patens, S. moellendorffii and Arabidopsis thaliana genomes suggests that the well-established rapid transcriptional response to auxin of flowering plants, evolved in vascular plants after their divergence from the last common ancestor shared with mosses. An N-terminally truncated ARF transcriptional activator is encoded by the genomes of P. patens and S. moellendorffii, and suggests a supplementary mechanism of nuclear auxin signalling, absent in flowering plants. Site-specific analyses of positive Darwinian selection revealed relatively high rates of synonymous substitution in the A. thaliana ARFs of classes IIa (and their closest orthologous genes in poplar) and Ib, suggesting that neofunctionalization in important functional regions has driven the evolution of auxin signalling in flowering plants. Primary auxin responsive gene families (GH3, SAUR, LBD) show different phylogenetic profiles in P. patens, S. moellendorffii and flowering plants, highlighting genes for further study.

Conclusion: The genome of P. patens encodes all of the basic components necessary for a rapid auxin response. The spatial separation of the Q-rich activator domain and DNA-binding domain suggests an alternative mechanism of transcriptional control in P. patens distinct from the mechanism seen in flowering plants. Significantly, the genome of S. moellendorffii is predicted to encode proteins suitable for both methods of regulation.

Citing Articles

The WUSCHEL-related homeobox transcription factor negatively regulates fruit spine morphogenesis in cucumber ( L.).

Xu S, Wang Y, Yang S, Fan S, Shi K, Wang F Hortic Res. 2024; 11(8):uhae163.

PMID: 39108588 PMC: 11298622. DOI: 10.1093/hr/uhae163.


Cell death in bryophytes: emerging models to study core regulatory modules and conserved pathways.

Marchetti F, Distefano A, Cainzos M, Setzes N, Cascallares M, Lopez G Ann Bot. 2024; 134(3):367-384.

PMID: 38953500 PMC: 11341678. DOI: 10.1093/aob/mcae081.


Genome-wide characterization, functional analysis, and expression profiling of the Aux/IAA gene family in spinach.

Imani Asl E, Soorni A, Mehrabi R BMC Genomics. 2024; 25(1):567.

PMID: 38840073 PMC: 11155116. DOI: 10.1186/s12864-024-10467-z.


Identification and Expression Analysis of the WOX Transcription Factor Family in Foxtail Millet ( L.).

Nan L, Li Y, Ma C, Meng X, Han Y, Li H Genes (Basel). 2024; 15(4).

PMID: 38674410 PMC: 11050393. DOI: 10.3390/genes15040476.


Game of thrones among AUXIN RESPONSE FACTORs-over 30 years of MONOPTEROS research.

Wojcikowska B, Belaidi S, Robert H J Exp Bot. 2023; 74(22):6904-6921.

PMID: 37450945 PMC: 10690734. DOI: 10.1093/jxb/erad272.


References
1.
Tiwari S, Hagen G, Guilfoyle T . The roles of auxin response factor domains in auxin-responsive transcription. Plant Cell. 2003; 15(2):533-43. PMC: 141219. DOI: 10.1105/tpc.008417. View

2.
Paponov I, Paponov M, Teale W, Menges M, Chakrabortee S, Murray J . Comprehensive transcriptome analysis of auxin responses in Arabidopsis. Mol Plant. 2009; 1(2):321-37. DOI: 10.1093/mp/ssm021. View

3.
Durand D, Halldorsson B, Vernot B . A hybrid micro-macroevolutionary approach to gene tree reconstruction. J Comput Biol. 2006; 13(2):320-35. DOI: 10.1089/cmb.2006.13.320. View

4.
Yang Z, Wong W, Nielsen R . Bayes empirical bayes inference of amino acid sites under positive selection. Mol Biol Evol. 2005; 22(4):1107-18. DOI: 10.1093/molbev/msi097. View

5.
Fujita T, Sakaguchi H, Hiwatashi Y, Wagstaff S, Ito M, Deguchi H . Convergent evolution of shoots in land plants: lack of auxin polar transport in moss shoots. Evol Dev. 2008; 10(2):176-86. DOI: 10.1111/j.1525-142X.2008.00225.x. View