» Articles » PMID: 19471586

Characterization of the Complete Mitochondrial Genome of the Giant Silkworm Moth, Eriogyna Pyretorum (Lepidoptera: Saturniidae)

Overview
Journal Int J Biol Sci
Specialty Biology
Date 2009 May 28
PMID 19471586
Citations 47
Authors
Affiliations
Soon will be listed here.
Abstract

The complete mitochondrial genome (mitogenome) of Eriogyna pyretorum (Lepidoptera: Saturniidae) was determined as being composed of 15,327 base pairs (bp), including 13 protein-coding genes (PCGs), 2 rRNA genes, 22 tRNA genes, and a control region. The arrangement of the PCGs is the same as that found in the other sequenced lepidopteran. The AT skewness for the E. pyretorum mitogenome is slightly negative (-0.031), indicating the occurrence of more Ts than As. The nucleotide composition of the E. pyretorum mitogenome is also biased toward A + T nucleotides (80.82%). All PCGs are initiated by ATN codons, except for cytochrome c oxidase subunit 1 and 2 (cox1 and cox2). Two of the 13 PCGs harbor the incomplete termination codon by T. All tRNA genes have a typical clover-leaf structure of mitochondrial tRNA, with the exception of trnS1(AGN) and trnS2(UCN). Phylogenetic analysis among the available lepidopteran species supports the current morphology-based hypothesis that Bombycoidea, Geometroidea, Notodontidea, Papilionoidea and Pyraloidea are monophyletic. As has been previously suggested, Bombycidae (Bombyx mori and Bombyx mandarina), Sphingoidae (Manduca sexta) and Saturniidae (Antheraea pernyi, Antheraea yamamai, E. pyretorum and Caligula boisduvalii) formed a group.

Citing Articles

Phylogenetic and Comparative Genomics Study of Papilionidae Based on Mitochondrial Genomes.

Yan Z, Tang X, Yang D, Fan Z, Luo S, Chen B Genes (Basel). 2024; 15(7).

PMID: 39062743 PMC: 11275471. DOI: 10.3390/genes15070964.


Phylogenomics including the newly sequenced mitogenomes of two moths (Noctuoidea, Erebidae) reveals Ischyja manlia (incertae sedis) as a member of subfamily Erebinae.

Riyaz M, Shah R, Ignacimuthu S, Sivasankaran K Genetica. 2023; 151(2):105-118.

PMID: 36708484 DOI: 10.1007/s10709-023-00180-2.


Characterization of four mitochondrial genomes from superfamilies Noctuoidea and Hyblaeoidea with their phylogenetic implications.

Shah R, Riyaz M, Ignacimuthu S, Sivasankaran K Sci Rep. 2022; 12(1):18926.

PMID: 36344589 PMC: 9640664. DOI: 10.1038/s41598-022-21502-y.


Genome Organization and Comparative Evolutionary Mitochondriomics of Brown Planthopper, Biotype 4 Using Next Generation Sequencing (NGS).

Govindharaj G, Babu S, Choudhary J, Asad M, Chidambaranathan P, Gadratagi B Life (Basel). 2022; 12(9).

PMID: 36143326 PMC: 9506247. DOI: 10.3390/life12091289.


Universal Mitochondrial Multi-Locus Sequence Analysis (mtMLSA) to Characterise Populations of Unanticipated Plant Pest Biosecurity Detections.

Hiszczynska-Sawicka E, Li D, Armstrong K Biology (Basel). 2022; 11(5).

PMID: 35625382 PMC: 9138331. DOI: 10.3390/biology11050654.


References
1.
Castresana J . Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol. 2000; 17(4):540-52. DOI: 10.1093/oxfordjournals.molbev.a026334. View

2.
Boore J, Lavrov D, Brown W . Gene translocation links insects and crustaceans. Nature. 1998; 392(6677):667-8. DOI: 10.1038/33577. View

3.
Adachi J, Hasegawa M . Model of amino acid substitution in proteins encoded by mitochondrial DNA. J Mol Evol. 1996; 42(4):459-68. DOI: 10.1007/BF02498640. View

4.
Clary D, WOLSTENHOLME D . The mitochondrial DNA molecular of Drosophila yakuba: nucleotide sequence, gene organization, and genetic code. J Mol Evol. 1985; 22(3):252-71. DOI: 10.1007/BF02099755. View

5.
Lee E, Shin K, Kim M, Park H, Cho S, Kim C . The mitochondrial genome of the smaller tea tortrix Adoxophyes honmai (Lepidoptera: Tortricidae). Gene. 2006; 373:52-7. DOI: 10.1016/j.gene.2006.01.003. View