» Articles » PMID: 19464255

Distinct HDL Subclasses Present Similar Intrinsic Susceptibility to Oxidation by HOCl

Overview
Publisher Elsevier
Specialties Biochemistry
Biophysics
Date 2009 May 26
PMID 19464255
Citations 5
Authors
Affiliations
Soon will be listed here.
Abstract

The heme protein myeloperoxidase (MPO) functions as a catalyst for lipoprotein oxidation. Hypochlorous acid (HOCl), a potent two-electron oxidant formed by the MPO-H(2)O(2)-chloride system of activated phagocytes, modifies antiatherogenic high-density lipoprotein (HDL). The structural heterogeneity and oxidative susceptibility of HDL particle subfractions were probed with HOCl. All distinct five HDL subfraction were modified by HOCl as demonstrated by the consumption of tryptophan residues and free amino groups, cross-linking of apolipoprotein AI, formation of HOCl-modified epitopes, increased electrophoretic mobility and altered content of unsaturated fatty acids in HDL subclasses. Small, dense HDL3 were less susceptible to oxidative modification than large, light HDL2 on a total mass basis at a fixed HOCl:HDL mass ratio of 1:32, but in contrast not on a particle number basis at a fixed HOCl:HDL molar ratio of 97:1. We conclude that structural and physicochemical differences between HDL subclasses do not influence their intrinsic susceptibility to oxidative attack by HOCl.

Citing Articles

Sepsis-Induced Coagulopathy Phenotype Induced by Oxidized High-Density Lipoprotein Associated with Increased Mortality in Septic-Shock Patients.

Prado Y, Tapia P, Eltit F, Reyes-Martinez C, Feijoo C, Llancalahuen F Antioxidants (Basel). 2023; 12(3).

PMID: 36978791 PMC: 10045333. DOI: 10.3390/antiox12030543.


The pattern of apolipoprotein A-I lysine carbamylation reflects its lipidation state and the chemical environment within human atherosclerotic aorta.

Battle S, Gogonea V, Willard B, Wang Z, Fu X, Huang Y J Biol Chem. 2022; 298(4):101832.

PMID: 35304099 PMC: 9010765. DOI: 10.1016/j.jbc.2022.101832.


VPO1 mediates ApoE oxidation and impairs the clearance of plasma lipids.

Yang Y, Cao Z, Tian L, Garvey W, Cheng G PLoS One. 2013; 8(2):e57571.

PMID: 23451244 PMC: 3581477. DOI: 10.1371/journal.pone.0057571.


Preservation of biological function despite oxidative modification of the apolipoprotein A-I mimetic peptide 4F.

White C, Datta G, Buck A, Chaddha M, Reddy G, Wilson L J Lipid Res. 2012; 53(8):1576-87.

PMID: 22589558 PMC: 3540838. DOI: 10.1194/jlr.M026278.


Effect of HDL composition and particle size on the resistance of HDL to the oxidation.

Shuhei N, Soderlund S, Jauhiainen M, Taskinen M Lipids Health Dis. 2010; 9:104.

PMID: 20863394 PMC: 2954910. DOI: 10.1186/1476-511X-9-104.

References
1.
Moldoveanu E, Tanaseanu C, Tanaseanu S, Kosaka T, Manea G, Marta D . Plasma markers of endothelial dysfunction in type 2 diabetics. Eur J Intern Med. 2005; 17(1):38-42. DOI: 10.1016/j.ejim.2005.09.015. View

2.
Lefevre G, Myara I, Peynet J, Couderc R . Effect of sucrose/ -80 degrees C storage of plasma on between-site values of low-density lipoprotein susceptibility to copper-induced oxidation. GERBAP Section Lipoprotéines. Groupe d'Evaluation et de Recherche des Biologistes de l'Assistance.... Clin Chim Acta. 1997; 258(2):249-55. DOI: 10.1016/s0009-8981(96)06462-5. View

3.
Malle E, Ibovnik A, Leis H, Kostner G, Verhallen P, Sattler W . Lysine modification of LDL or lipoprotein(a) by 4-hydroxynonenal or malondialdehyde decreases platelet serotonin secretion without affecting platelet aggregability and eicosanoid formation. Arterioscler Thromb Vasc Biol. 1995; 15(3):377-84. DOI: 10.1161/01.atv.15.3.377. View

4.
Linsel-Nitschke P, Tall A . HDL as a target in the treatment of atherosclerotic cardiovascular disease. Nat Rev Drug Discov. 2005; 4(3):193-205. DOI: 10.1038/nrd1658. View

5.
Arnhold J, Osipov A, Spalteholz H, Panasenko O, Schiller J . Effects of hypochlorous acid on unsaturated phosphatidylcholines. Free Radic Biol Med. 2001; 31(9):1111-9. DOI: 10.1016/s0891-5849(01)00695-5. View