» Articles » PMID: 19456872

Dissecting the Pleiotropic Consequences of a Quantitative Trait Nucleotide

Overview
Journal FEMS Yeast Res
Specialty Microbiology
Date 2009 May 22
PMID 19456872
Citations 20
Authors
Affiliations
Soon will be listed here.
Abstract

The downstream consequences of a single quantitative trait polymorphism can provide important insight into the molecular basis of a trait. However, the molecular consequences of a polymorphism may be complex and only a subset of these may influence the trait of interest. In natural isolates of Saccharomyces cerevisiae, a nonsynonymous polymorphism in cystathione beta-synthase (CYS4) causes a deficiency in both cysteine and glutathione that results in rust-colored colonies and drug-dependent growth defects. Using a single-nucleotide allele replacement, we characterized the effects of this polymorphism on gene expression levels across the genome. To determine whether any of the differentially expressed genes are necessary for the production of rust-colored colonies, we screened the yeast deletion collection for genes that enhance or suppress rust coloration. We found that genes in the sulfur assimilation pathway are required for the production of rust color but not the drug-sensitivity phenotype. Our results show that a single quantitative trait polymorphism can generate a complex set of downstream changes, providing a molecular basis for pleiotropy.

Citing Articles

Multiple epistatic DNA variants in a single gene affect gene expression in trans.

Lutz S, Van Dyke K, Feraru M, Albert F Genetics. 2021; 220(1).

PMID: 34791209 PMC: 8733636. DOI: 10.1093/genetics/iyab208.


A neglected conceptual problem regarding phenotypic plasticity's role in adaptive evolution: The importance of genetic covariance and social drive.

Bailey N, Desjonqueres C, Drago A, Rayner J, Sturiale S, Zhang X Evol Lett. 2021; 5(5):444-457.

PMID: 34621532 PMC: 8484725. DOI: 10.1002/evl3.251.


DNA variants affecting the expression of numerous genes in trans have diverse mechanisms of action and evolutionary histories.

Lutz S, Brion C, Kliebhan M, Albert F PLoS Genet. 2019; 15(11):e1008375.

PMID: 31738765 PMC: 6886874. DOI: 10.1371/journal.pgen.1008375.


Quantitative Trait Nucleotides Impacting the Technological Performances of Industrial Strains.

Peltier E, Friedrich A, Schacherer J, Marullo P Front Genet. 2019; 10:683.

PMID: 31396264 PMC: 6664092. DOI: 10.3389/fgene.2019.00683.


Sulfate assimilation regulates hydrogen sulfide production independent of lifespan and reactive oxygen species under methionine restriction condition in yeast.

Choi K, Kim S, Kim S, Lee H, Kaya A, Chun B Aging (Albany NY). 2019; 11(12):4254-4273.

PMID: 31254461 PMC: 6628990. DOI: 10.18632/aging.102050.


References
1.
Thomas D . Metabolism of sulfur amino acids in Saccharomyces cerevisiae. Microbiol Mol Biol Rev. 1997; 61(4):503-32. PMC: 232622. DOI: 10.1128/mmbr.61.4.503-532.1997. View

2.
Spiropoulos A, Bisson L . MET17 and hydrogen sulfide formation in Saccharomyces cerevisiae. Appl Environ Microbiol. 2000; 66(10):4421-6. PMC: 92319. DOI: 10.1128/AEM.66.10.4421-4426.2000. View

3.
Linderholm A, Findleton C, Kumar G, Hong Y, Bisson L . Identification of genes affecting hydrogen sulfide formation in Saccharomyces cerevisiae. Appl Environ Microbiol. 2008; 74(5):1418-27. PMC: 2258607. DOI: 10.1128/AEM.01758-07. View

4.
Smith E, Kruglyak L . Gene-environment interaction in yeast gene expression. PLoS Biol. 2008; 6(4):e83. PMC: 2292755. DOI: 10.1371/journal.pbio.0060083. View

5.
Sinha H, Nicholson B, Steinmetz L, McCusker J . Complex genetic interactions in a quantitative trait locus. PLoS Genet. 2006; 2(2):e13. PMC: 1359075. DOI: 10.1371/journal.pgen.0020013. View