Sharma M, Sierka M
J Chem Theory Comput. 2024; 20(21):9592-9605.
PMID: 39417709
PMC: 11562370.
DOI: 10.1021/acs.jctc.4c00819.
Villard J, Bircher M, Rothlisberger U
J Chem Theory Comput. 2023; 19(24):9211-9227.
PMID: 38048449
PMC: 10753812.
DOI: 10.1021/acs.jctc.3c00952.
Mihm T, Weiler L, Shepherd J
J Chem Theory Comput. 2023; 19(6):1686-1697.
PMID: 36918372
PMC: 10061680.
DOI: 10.1021/acs.jctc.2c00737.
Goldzak T, Wang X, Ye H, Berkelbach T
J Chem Phys. 2022; 157(17):174112.
PMID: 36347707
PMC: 9637026.
DOI: 10.1063/5.0119633.
Mitra A, Hermes M, Cho M, Agarawal V, Gagliardi L
J Phys Chem Lett. 2022; 13(32):7483-7489.
PMID: 35939641
PMC: 9393885.
DOI: 10.1021/acs.jpclett.2c01915.
Approaching the basis set limit in Gaussian-orbital-based periodic calculations with transferability: Performance of pure density functionals for simple semiconductors.
Lee J, Feng X, Cunha L, Gonthier J, Epifanovsky E, Head-Gordon M
J Chem Phys. 2021; 155(16):164102.
PMID: 34717349
PMC: 8556001.
DOI: 10.1063/5.0069177.
Doubly Hybrid Functionals Close to Chemical Accuracy for Both Finite and Extended Systems: Implementation and Test of XYG3 and XYGJ-OS.
Wang Y, Li Y, Chen J, Zhang I, Xu X
JACS Au. 2021; 1(5):543-549.
PMID: 34467317
PMC: 8395692.
DOI: 10.1021/jacsau.1c00011.
Implementation of Laplace Transformed MP2 for Periodic Systems With Numerical Atomic Orbitals.
Shang H, Yang J
Front Chem. 2020; 8:589992.
PMID: 33240850
PMC: 7683768.
DOI: 10.3389/fchem.2020.589992.
Double-Hybrid DFT Functionals for the Condensed Phase: Gaussian and Plane Waves Implementation and Evaluation.
Stein F, Hutter J, Rybkin V
Molecules. 2020; 25(21).
PMID: 33172070
PMC: 7664425.
DOI: 10.3390/molecules25215174.
Computation of NMR Shielding Constants for Solids Using an Embedded Cluster Approach with DFT, Double-Hybrid DFT, and MP2.
Dittmer A, Stoychev G, Maganas D, Auer A, Neese F
J Chem Theory Comput. 2020; 16(11):6950-6967.
PMID: 32966067
PMC: 7659039.
DOI: 10.1021/acs.jctc.0c00067.
Efficient Treatment of Correlation Energies at the Basis-Set Limit by Monte Carlo Summation of Continuum States.
Bircher M, Villard J, Rothlisberger U
J Chem Theory Comput. 2020; 16(10):6550-6559.
PMID: 32915565
PMC: 7584365.
DOI: 10.1021/acs.jctc.0c00724.
Gaussian Basis Sets for Crystalline Solids: All-Purpose Basis Set Libraries vs System-Specific Optimizations.
Daga L, Civalleri B, Maschio L
J Chem Theory Comput. 2020; 16(4):2192-2201.
PMID: 32212698
PMC: 7997400.
DOI: 10.1021/acs.jctc.9b01004.
Overcoming the difficulties of predicting conformational polymorph energetics in molecular crystals correlated wavefunction methods.
Greenwell C, McKinley J, Zhang P, Zeng Q, Sun G, Li B
Chem Sci. 2020; 11(8):2200-2214.
PMID: 32190277
PMC: 7059316.
DOI: 10.1039/c9sc05689k.
Accurate Band Gap Predictions of Semiconductors in the Framework of the Similarity Transformed Equation of Motion Coupled Cluster Theory.
Dittmer A, Izsak R, Neese F, Maganas D
Inorg Chem. 2019; 58(14):9303-9315.
PMID: 31240911
PMC: 6750750.
DOI: 10.1021/acs.inorgchem.9b00994.
Communication: A novel implementation to compute MP2 correlation energies without basis set superposition errors and complete basis set extrapolation.
Dixit A, Claudot J, Lebegue S, Rocca D
J Chem Phys. 2017; 146(21):211102.
PMID: 28595409
PMC: 5457293.
DOI: 10.1063/1.4985096.
A comparison between quantum chemistry and quantum Monte Carlo techniques for the adsorption of water on the (001) LiH surface.
Tsatsoulis T, Hummel F, Usvyat D, Schutz M, Booth G, Binnie S
J Chem Phys. 2017; 146(20):204108.
PMID: 28571392
PMC: 5446292.
DOI: 10.1063/1.4984048.
Towards an exact description of electronic wavefunctions in real solids.
Booth G, Gruneis A, Kresse G, Alavi A
Nature. 2012; 493(7432):365-70.
PMID: 23254929
DOI: 10.1038/nature11770.