» Articles » PMID: 19444872

Single Nucleotide Polymorphism-mediated Translational Suppression of Endoplasmic Reticulum Mannosidase I Modifies the Onset of End-stage Liver Disease in Alpha1-antitrypsin Deficiency

Overview
Journal Hepatology
Specialty Gastroenterology
Date 2009 May 16
PMID 19444872
Citations 39
Authors
Affiliations
Soon will be listed here.
Abstract

Unlabelled: Inappropriate accumulation of the misfolded Z variant of alpha1-antitrypsin in the hepatocyte endoplasmic reticulum (ER) is a risk factor for the development of end-stage liver disease. However, the genetic and environmental factors that contribute to its etiology are poorly understood. ER mannosidase I (ERManI) is a quality control factor that plays a critical role in the sorting and targeting of misfolded glycoproteins for proteasome-mediated degradation. In this study, we tested whether genetic variations in the human ERManI gene influence the age at onset of end-stage liver disease in patients homozygous for the Z allele (ZZ). We sequenced all 13 exons in a group of unrelated Caucasian ZZ transplant recipients with different age at onset of the end-stage liver disease. Homozygosity for the minor A allele at 2484G/A (refSNP ID number rs4567) in the 3'-untranslated region was prevalent in the infant ZZ patients. Functional studies indicated that rs4567(A), but not rs4567(G), suppresses ERManI translation under ER stress conditions.

Conclusion: These findings suggest that the identified single-nucleotide polymorphism can accelerate the onset of the end-stage liver disease associated with alpha1-antitrypsin deficiency and underscore the contribution of biosynthetic quality control as a modifier of genetic disease.

Citing Articles

Spatial covariance reveals isothiocyanate natural products adjust redox stress to restore function in alpha-1-antitrypsin deficiency.

Sun S, Wang C, Hu J, Zhao P, Wang X, Balch W Cell Rep Med. 2025; 6(1):101917.

PMID: 39809267 PMC: 11866504. DOI: 10.1016/j.xcrm.2024.101917.


Tracing genetic diversity captures the molecular basis of misfolding disease.

Zhao P, Wang C, Sun S, Wang X, Balch W Nat Commun. 2024; 15(1):3333.

PMID: 38637533 PMC: 11026414. DOI: 10.1038/s41467-024-47520-0.


Human iPSC-hepatocyte modeling of alpha-1 antitrypsin heterozygosity reveals metabolic dysregulation and cellular heterogeneity.

Kaserman J, Werder R, Wang F, Matte T, Higgins M, Dodge M Cell Rep. 2022; 41(10):111775.

PMID: 36476855 PMC: 9780780. DOI: 10.1016/j.celrep.2022.111775.


Hepatocyte proteomes reveal the role of protein disulfide isomerase 4 in alpha 1-antitrypsin deficiency.

Karatas E, Raymond A, Leon C, Dupuy J, Di-Tommaso S, Senant N JHEP Rep. 2021; 3(4):100297.

PMID: 34151245 PMC: 8192868. DOI: 10.1016/j.jhepr.2021.100297.


The Autophagy Pathway: A Critical Route in the Disposal of Alpha 1-Antitrypsin Aggregates That Holds Many Mysteries.

Leon C, Bouchecareilh M Int J Mol Sci. 2021; 22(4).

PMID: 33668611 PMC: 7917825. DOI: 10.3390/ijms22041875.


References
1.
Hidvegi T, Schmidt B, Hale P, Perlmutter D . Accumulation of mutant alpha1-antitrypsin Z in the endoplasmic reticulum activates caspases-4 and -12, NFkappaB, and BAP31 but not the unfolded protein response. J Biol Chem. 2005; 280(47):39002-15. DOI: 10.1074/jbc.M508652200. View

2.
Qu D, Teckman J, Perlmutter D . Review: alpha 1-antitrypsin deficiency associated liver disease. J Gastroenterol Hepatol. 1997; 12(5):404-16. DOI: 10.1111/j.1440-1746.1997.tb00451.x. View

3.
Eriksson S . Studies in alpha 1-antitrypsin deficiency. Acta Med Scand Suppl. 1965; 432:1-85. View

4.
Perlmutter D . Liver injury in alpha 1-antitrypsin deficiency. Clin Liver Dis. 2001; 4(2):387-408, vi. DOI: 10.1016/s1089-3261(05)70115-x. View

5.
Teckman J . Alpha1-antitrypsin deficiency in childhood. Semin Liver Dis. 2007; 27(3):274-81. DOI: 10.1055/s-2007-985072. View