» Articles » PMID: 19443687

Automated High-dimensional Flow Cytometric Data Analysis

Overview
Specialty Science
Date 2009 May 16
PMID 19443687
Citations 119
Authors
Affiliations
Soon will be listed here.
Abstract

Flow cytometric analysis allows rapid single cell interrogation of surface and intracellular determinants by measuring fluorescence intensity of fluorophore-conjugated reagents. The availability of new platforms, allowing detection of increasing numbers of cell surface markers, has challenged the traditional technique of identifying cell populations by manual gating and resulted in a growing need for the development of automated, high-dimensional analytical methods. We present a direct multivariate finite mixture modeling approach, using skew and heavy-tailed distributions, to address the complexities of flow cytometric analysis and to deal with high-dimensional cytometric data without the need for projection or transformation. We demonstrate its ability to detect rare populations, to model robustly in the presence of outliers and skew, and to perform the critical task of matching cell populations across samples that enables downstream analysis. This advance will facilitate the application of flow cytometry to new, complex biological and clinical problems.

Citing Articles

Should Artificial Intelligence Play a Durable Role in Biomedical Research and Practice?.

Bongrand P Int J Mol Sci. 2025; 25(24.

PMID: 39769135 PMC: 11676049. DOI: 10.3390/ijms252413371.


cytoKernel: Robust kernel embeddings for assessing differential expression of single cell data.

Ghosh T, Baxter R, Seal S, Lui V, Rudra P, Vu T bioRxiv. 2024; .

PMID: 39229233 PMC: 11370373. DOI: 10.1101/2024.08.16.608287.


GateMeClass: Gate Mining and Classification of cytometry data.

Caligola S, Giacobazzi L, Cane S, Vella A, Adamo A, Ugel S Bioinformatics. 2024; 40(5).

PMID: 38775676 PMC: 11136448. DOI: 10.1093/bioinformatics/btae322.


Characterization of CD34 Cells from Patients with Acute Myeloid Leukemia (AML) and Myelodysplastic Syndromes (MDS) Using a t-Distributed Stochastic Neighbor Embedding (t-SNE) Protocol.

Nollmann C, Moskorz W, Wimmenauer C, Jager P, Cadeddu R, Timm J Cancers (Basel). 2024; 16(7).

PMID: 38610998 PMC: 11010974. DOI: 10.3390/cancers16071320.


A cell-level discriminative neural network model for diagnosis of blood cancers.

Robles E, Jin Y, Smyth P, Scheuermann R, Bui J, Wang H Bioinformatics. 2023; 39(10).

PMID: 37756695 PMC: 10563151. DOI: 10.1093/bioinformatics/btad585.


References
1.
De Rosa S, Brenchley J, Roederer M . Beyond six colors: a new era in flow cytometry. Nat Med. 2003; 9(1):112-7. DOI: 10.1038/nm0103-112. View

2.
Maier L, Anderson D, De Jager P, Wicker L, Hafler D . Allelic variant in CTLA4 alters T cell phosphorylation patterns. Proc Natl Acad Sci U S A. 2007; 104(47):18607-12. PMC: 2141824. DOI: 10.1073/pnas.0706409104. View

3.
Perfetto S, Ambrozak D, Nguyen R, Chattopadhyay P, Roederer M . Quality assurance for polychromatic flow cytometry. Nat Protoc. 2007; 1(3):1522-30. DOI: 10.1038/nprot.2006.250. View

4.
Baecher-Allan C, Wolf E, Hafler D . MHC class II expression identifies functionally distinct human regulatory T cells. J Immunol. 2006; 176(8):4622-31. DOI: 10.4049/jimmunol.176.8.4622. View

5.
le Meur N, Rossini A, Gasparetto M, Smith C, Brinkman R, Gentleman R . Data quality assessment of ungated flow cytometry data in high throughput experiments. Cytometry A. 2007; 71(6):393-403. PMC: 2768034. DOI: 10.1002/cyto.a.20396. View