» Articles » PMID: 19431334

Passive Electrical Properties of Microorganisms: I. Conductivity of Escherichia Coli and Micrococcus Lysodeikticus

Overview
Journal Biophys J
Publisher Cell Press
Specialty Biophysics
Date 2009 May 12
PMID 19431334
Citations 15
Authors
Affiliations
Soon will be listed here.
Abstract

Effective conductivities are reported for the bacteria Escherichia coli and Micrococcus lysodeikticus over a range of environmental conductivity. The apparent conductivities of the organisms can be explained in terms of the properties of the cell wall. At low conductivities of the environment, the conductivity of the cell appears to be dominated by the counterions of the fixed charge of the cell wall. At higher conductivities of the suspending medium, evidence suggests that ions from the environment invade the cell wall causing an increase in the effective conductivity of the cell so that it takes on values roughly proportional to that of the environment. The model points to the usefulness of dielectric techniques in studies of the properties of intact cell walls.

Citing Articles

Rapid detection of urinary tract infections using isotachophoresis and molecular beacons.

Bercovici M, Kaigala G, Mach K, Han C, Liao J, Santiago J Anal Chem. 2011; 83(11):4110-7.

PMID: 21545089 PMC: 3116659. DOI: 10.1021/ac200253x.


Separation by dielectrophoresis of dormant and nondormant bacterial cells of Mycobacterium smegmatis.

Zhu K, Kaprelyants A, Salina E, Markx G Biomicrofluidics. 2010; 4(2).

PMID: 20697591 PMC: 2917864. DOI: 10.1063/1.3435335.


Dielectric behavior of wild-type yeast and vacuole-deficient mutant over a frequency range of 10 kHz to 10 GHz.

Asami K, Yonezawa T Biophys J. 1996; 71(4):2192-200.

PMID: 8889195 PMC: 1233687. DOI: 10.1016/S0006-3495(96)79420-1.


Binding of metals to cell envelopes of Escherichia coli K-12.

Beveridge T, Koval S Appl Environ Microbiol. 1981; 42(2):325-35.

PMID: 7025758 PMC: 244009. DOI: 10.1128/aem.42.2.325-335.1981.


Dielectric analysis of Escherichia coli suspensions in the light of the theory of interfacial polarization.

Asami K, Hanai T, Koizumi N Biophys J. 1980; 31(2):215-28.

PMID: 7020783 PMC: 1328779. DOI: 10.1016/S0006-3495(80)85052-1.


References
1.
GAFFEY C, Mullins L . Ion fluxes during the action potential in Chara. J Physiol. 1958; 144(3):505-24. PMC: 1356793. DOI: 10.1113/jphysiol.1958.sp006116. View

2.
Jermyn M, TOMKINS R . The chromatographic examination of the products of the action of pectinase on pectin. Biochem J. 1950; 47(4):437-42. PMC: 1275240. DOI: 10.1042/bj0470437. View

3.
Cole K, Moore J . Ionic current measurements in the squid giant axon membrane. J Gen Physiol. 1960; 44:123-67. PMC: 2195082. DOI: 10.1085/jgp.44.1.123. View

4.
McCALLA T . Cation Adsorption by Bacteria. J Bacteriol. 1940; 40(1):23-32. PMC: 374619. DOI: 10.1128/jb.40.1.23-32.1940. View

5.
Gerhardt P, BLACK S . Permeability of bacterial spores. II. Molecular variables affecting solute permeation. J Bacteriol. 1961; 82:750-60. PMC: 279245. DOI: 10.1128/jb.82.5.750-760.1961. View