Nanotubular Metal-insulator-metal Capacitor Arrays for Energy Storage
Overview
Affiliations
Nanostructured devices have the potential to serve as the basis for next-generation energy systems that make use of densely packed interfaces and thin films. One approach to making such devices is to build multilayer structures of large area inside the open volume of a nanostructured template. Here, we report the use of atomic layer deposition to fabricate arrays of metal-insulator-metal nanocapacitors in anodic aluminium oxide nanopores. These highly regular arrays have a capacitance per unit planar area of approximately 10 microF cm-2 for 1-microm-thick anodic aluminium oxide and approximately 100 microF cm-2 for 10-microm-thick anodic aluminium oxide, significantly exceeding previously reported values for metal-insulator-metal capacitors in porous templates. It should be possible to scale devices fabricated with this approach to make viable energy storage systems that provide both high energy density and high power density.
Huang Y, Kida T, Wakiuchi S, Okatani T, Inomata N, Kanamori Y Adv Sci (Weinh). 2024; 11(34):e2405378.
PMID: 38976553 PMC: 11425637. DOI: 10.1002/advs.202405378.
Ultrahigh Energy Storage Density in Superparaelectric-Like Hf Zr O Electrostatic Supercapacitors.
Chen H, Liu L, Yan Z, Yuan X, Luo H, Zhang D Adv Sci (Weinh). 2023; 10(18):e2300792.
PMID: 37083243 PMC: 10288225. DOI: 10.1002/advs.202300792.
The Effect of Anodizing Bath Composition on the Electronic Properties of Anodic Ta-Nb Mixed Oxides.
Tranchida G, Zaffora A, Di Franco F, Santamaria M Nanomaterials (Basel). 2022; 12(24).
PMID: 36558292 PMC: 9781357. DOI: 10.3390/nano12244439.
Atomic Layer Assembly Based on Sacrificial Templates for 3D Nanofabrication.
Geng G, Zhang Z, Li C, Pan R, Li Y, Yang H Micromachines (Basel). 2022; 13(6).
PMID: 35744470 PMC: 9229614. DOI: 10.3390/mi13060856.
Hu N, Tang Z, Shen P RSC Adv. 2022; 8(47):26589-26595.
PMID: 35541063 PMC: 9083283. DOI: 10.1039/c8ra03599g.