» Articles » PMID: 19414529

ApLCMS--adaptive Processing of High-resolution LC/MS Data

Overview
Journal Bioinformatics
Specialty Biology
Date 2009 May 6
PMID 19414529
Citations 227
Authors
Affiliations
Soon will be listed here.
Abstract

Motivation: Liquid chromatography-mass spectrometry (LC/MS) profiling is a promising approach for the quantification of metabolites from complex biological samples. Significant challenges exist in the analysis of LC/MS data, including noise reduction, feature identification/ quantification, feature alignment and computation efficiency.

Result: Here we present a set of algorithms for the processing of high-resolution LC/MS data. The major technical improvements include the adaptive tolerance level searching rather than hard cutoff or binning, the use of non-parametric methods to fine-tune intensity grouping, the use of run filter to better preserve weak signals and the model-based estimation of peak intensities for absolute quantification. The algorithms are implemented in an R package apLCMS, which can efficiently process large LC/ MS datasets.

Availability: The R package apLCMS is available at www.sph.emory.edu/apLCMS.

Supplementary Information: Supplementary data are available at Bioinformatics online.

Citing Articles

Pharmacometabolomics in TB meningitis-Understanding the pharmacokinetic, metabolic, and immune factors associated with anti-TB drug concentrations in cerebrospinal fluid.

Collins J, Kipiani M, Jin Y, Sharma A, Tomalka J, Avaliani T PLoS One. 2025; 20(3):e0315999.

PMID: 40029856 PMC: 11875335. DOI: 10.1371/journal.pone.0315999.


An untargeted metabolome-wide association study of maternal perinatal tobacco smoking in newborn blood spots.

He D, Yan Q, Uppal K, Walker D, Jones D, Ritz B Metabolomics. 2025; 21(2):30.

PMID: 39979646 PMC: 11842421. DOI: 10.1007/s11306-025-02225-3.


Molecular profiling of neuronal extracellular vesicles reveals brain tissue specific signals.

Kalia V, Jackson G, Dominguez R, Pinto-Pacheco B, Bloomquist T, Furnari J medRxiv. 2025; .

PMID: 39974146 PMC: 11839008. DOI: 10.1101/2025.01.23.25320909.


Global metabolomic alterations associated with endocrine-disrupting chemicals among pregnant individuals and newborns.

Puvvula J, Song L, Zalewska K, Alexander A, Manz K, Braun J Metabolomics. 2025; 21(1):20.

PMID: 39863779 PMC: 11762426. DOI: 10.1007/s11306-024-02219-7.


Mammalian hydroxylation of microbiome-derived obesogen, delta-valerobetaine, to homocarnitine, a 5-carbon carnitine analog.

Weinberg J, Liu K, Lee C, Crandall W, Cuevas A, Druzak S J Biol Chem. 2024; 301(1):108074.

PMID: 39675709 PMC: 11773067. DOI: 10.1016/j.jbc.2024.108074.


References
1.
Nobeli I, Thornton J . A bioinformatician's view of the metabolome. Bioessays. 2006; 28(5):534-45. DOI: 10.1002/bies.20414. View

2.
Bellew M, Coram M, Fitzgibbon M, Igra M, Randolph T, Wang P . A suite of algorithms for the comprehensive analysis of complex protein mixtures using high-resolution LC-MS. Bioinformatics. 2006; 22(15):1902-9. DOI: 10.1093/bioinformatics/btl276. View

3.
Smith C, Want E, OMaille G, Abagyan R, Siuzdak G . XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal Chem. 2006; 78(3):779-87. DOI: 10.1021/ac051437y. View

4.
Sturm M, Bertsch A, Gropl C, Hildebrandt A, Hussong R, Lange E . OpenMS - an open-source software framework for mass spectrometry. BMC Bioinformatics. 2008; 9:163. PMC: 2311306. DOI: 10.1186/1471-2105-9-163. View

5.
Windig W, Smith W . Chemometric analysis of complex hyphenated data. Improvements of the component detection algorithm. J Chromatogr A. 2007; 1158(1-2):251-7. DOI: 10.1016/j.chroma.2007.03.081. View