Shebanova A, Perrin Q, Zhu K, Gudlur S, Chen Z, Sun Y
Adv Sci (Weinh). 2024; 11(42):e2402652.
PMID: 39214144
PMC: 11558145.
DOI: 10.1002/advs.202402652.
Nagao M, Seto H
Biophys Rev (Melville). 2024; 4(2):021306.
PMID: 38504928
PMC: 10903442.
DOI: 10.1063/5.0144544.
Debnath K, Las Heras K, Rivera A, Lenzini S, Shin J
Nat Rev Mater. 2024; 8(6):390-402.
PMID: 38463907
PMC: 10919209.
DOI: 10.1038/s41578-023-00551-3.
Hassler J, Lawson M, Arroyo E, Bates F, Hackel B, Lodge T
Langmuir. 2023; 39(40):14263-14274.
PMID: 37755825
PMC: 10853007.
DOI: 10.1021/acs.langmuir.3c01499.
Shendrik P, Golani G, Dharan R, Schwarz U, Sorkin R
ACS Nano. 2023; 17(19):18942-18951.
PMID: 37669531
PMC: 7615193.
DOI: 10.1021/acsnano.3c04293.
Biophysics of Membrane Stiffening by Cholesterol and Phosphatidylinositol 4,5-bisphosphate (PIP2).
Doole F, Gupta S, Kumarage T, Ashkar R, Brown M
Adv Exp Med Biol. 2023; 1422:61-85.
PMID: 36988877
DOI: 10.1007/978-3-031-21547-6_2.
Membrane free-energy landscapes derived from atomistic dynamics explain nonuniversal cholesterol-induced stiffening.
Fiorin G, Forrest L, Faraldo-Gomez J
bioRxiv. 2023; .
PMID: 36778237
PMC: 9915699.
DOI: 10.1101/2023.02.02.525347.
An Application of Tumor-Associated Macrophages as Immunotherapy Targets: Sialic Acid-Modified EPI-Loaded Liposomes Inhibit Breast Cancer Metastasis.
Meng X, Wang M, Zhang K, Sui D, Chen M, Xu Z
AAPS PharmSciTech. 2022; 23(8):285.
PMID: 36258152
DOI: 10.1208/s12249-022-02432-4.
Cholesterol Stiffening of Lipid Membranes.
Doole F, Kumarage T, Ashkar R, Brown M
J Membr Biol. 2022; 255(4-5):385-405.
PMID: 36219221
PMC: 9552730.
DOI: 10.1007/s00232-022-00263-9.
The Effects of Cholesterol Oxidation on Erythrocyte Plasma Membranes: A Monolayer Study.
Lechner B, Smith P, McGill B, Marshall S, Trick J, Chumakov A
Membranes (Basel). 2022; 12(9).
PMID: 36135847
PMC: 9506283.
DOI: 10.3390/membranes12090828.
Cell membrane-camouflaged inorganic nanoparticles for cancer therapy.
Song W, Jia P, Zhang T, Dou K, Liu L, Ren Y
J Nanobiotechnology. 2022; 20(1):289.
PMID: 35717234
PMC: 9206402.
DOI: 10.1186/s12951-022-01475-w.
Effect of Cholesterol on Nano-Structural Alteration of Light-Activatable Liposomes via Laser Irradiation: Small Angle Neutron Scattering Study.
Yuan Z, Das S, Do C, Park Y
Colloids Surf A Physicochem Eng Asp. 2022; 641.
PMID: 35295084
PMC: 8920073.
DOI: 10.1016/j.colsurfa.2022.128548.
Effects of cholesterol on the size distribution and bending modulus of lipid vesicles.
Karal M, Mokta N, Levadny V, Belaya M, Ahmed M, Ahamed M
PLoS One. 2022; 17(1):e0263119.
PMID: 35089965
PMC: 8797199.
DOI: 10.1371/journal.pone.0263119.
Effect of gold nanoparticle incorporation into oil-swollen surfactant lamellar membranes.
Nagao M, Bradbury R, Ansar S, Kitchens C
Struct Dyn. 2020; 7(6):065102.
PMID: 33344674
PMC: 7744122.
DOI: 10.1063/4.0000041.
How cholesterol stiffens unsaturated lipid membranes.
Chakraborty S, Doktorova M, Molugu T, Heberle F, Scott H, Dzikovski B
Proc Natl Acad Sci U S A. 2020; 117(36):21896-21905.
PMID: 32843347
PMC: 7486787.
DOI: 10.1073/pnas.2004807117.
Influence of Cholesterol and Bilayer Curvature on the Interaction of PPO-PEO Block Copolymers with Liposomes.
Zhang W, Coughlin M, Metzger J, Hackel B, Bates F, Lodge T
Langmuir. 2019; 35(22):7231-7241.
PMID: 31117745
PMC: 7050598.
DOI: 10.1021/acs.langmuir.9b00572.
Relaxation dynamics of saturated and unsaturated oriented lipid bilayers.
Nanda H, Garcia Sakai V, Khodadadi S, Tyagi M, Schwalbach E, Curtis J
Soft Matter. 2018; 14(29):6119-6127.
PMID: 29998268
PMC: 6262841.
DOI: 10.1039/c7sm01720k.
Structure-Property Relationships of Amphiphilic Nanoparticles That Penetrate or Fuse Lipid Membranes.
Atukorale P, Guven Z, Bekdemir A, Carney R, Van Lehn R, Yun D
Bioconjug Chem. 2018; 29(4):1131-1140.
PMID: 29465986
PMC: 6311100.
DOI: 10.1021/acs.bioconjchem.7b00777.
Pore formation in lipid membrane II: Energy landscape under external stress.
Akimov S, Volynsky P, Galimzyanov T, Kuzmin P, Pavlov K, Batishchev O
Sci Rep. 2017; 7(1):12509.
PMID: 28970526
PMC: 5624950.
DOI: 10.1038/s41598-017-12749-x.
Pore formation in lipid membrane I: Continuous reversible trajectory from intact bilayer through hydrophobic defect to transversal pore.
Akimov S, Volynsky P, Galimzyanov T, Kuzmin P, Pavlov K, Batishchev O
Sci Rep. 2017; 7(1):12152.
PMID: 28939906
PMC: 5610326.
DOI: 10.1038/s41598-017-12127-7.