» Articles » PMID: 19409384

PAK Kinase Regulates Rac GTPase and is a Potential Target in Human Schwannomas

Overview
Journal Exp Neurol
Specialty Neurology
Date 2009 May 5
PMID 19409384
Citations 24
Authors
Affiliations
Soon will be listed here.
Abstract

Merlin loss causes benign tumours of the nervous system, mainly schwannomas and meningiomas. Schwannomas show enhanced Rac1 and Cdc42 activity, the p21-activated kinase 2 (PAK2) activation and increased ruffling and cell adhesion. PAK regulates activation of merlin. PAK has been proposed as a potential therapeutic target in schwannomas. However where PAK stands in the Rac pathway is insufficiently characterised. We used a novel small-molecule PAK inhibitor, IPA-3, to investigate the role of PAK activation on Rac1/Cdc42 activity, cell spreading and adhesion in human primary schwannoma and Schwann cells. We show that IPA-3 blocks activation of PAK2 at Ser192/197 that antagonises PAK's interaction with Pix. Accordingly, Pix-mediated Rac1 activation is decreased in IPA-3 treated schwannoma cells, indicating that PAK acts upstream of Rac. We show that this Rac activation at the level of focal adhesions in schwannoma cells is essential for cell spreading and adhesion in Schwann and schwannoma cells.

Citing Articles

Regulation of Vascular Injury and Repair by P21-Activated Kinase 1 and P21-Activated Kinase 2: Therapeutic Potential and Challenges.

Han C, Zhu M, Liu Y, Yang Y, Cheng J, Li P Biomolecules. 2025; 14(12.

PMID: 39766303 PMC: 11674331. DOI: 10.3390/biom14121596.


Rac1 GTPase Regulates the βTrCP-Mediated Proteolysis of YAP Independently of the LATS1/2 Kinases.

Palanivel C, Somers T, Gabler B, Chen Y, Zeng Y, Cox J Cancers (Basel). 2024; 16(21).

PMID: 39518045 PMC: 11545309. DOI: 10.3390/cancers16213605.


Targeting the Hippo pathway in Schwann cells ameliorates peripheral nerve degeneration via a polypharmacological mechanism.

Chung H, Nguyen T, Lee J, Huh Y, Ko S, Lim H Neurotherapeutics. 2024; 21(6):e00458.

PMID: 39384453 PMC: 11585884. DOI: 10.1016/j.neurot.2024.e00458.


Genetic mutation and immune infiltration in embryonal tumor with multilayered rosettes.

Zou Y, Liu Y, Liu H, Feng J, Gao P, Ma H Childs Nerv Syst. 2024; 40(9):2685-2696.

PMID: 38802706 DOI: 10.1007/s00381-024-06461-1.


Potential Molecular Biomarkers of Vestibular Schwannoma Growth: Progress and Prospects.

Zhang Y, Long J, Ren J, Huang X, Zhong P, Wang B Front Oncol. 2021; 11:731441.

PMID: 34646772 PMC: 8503266. DOI: 10.3389/fonc.2021.731441.


References
1.
Hanemann C, Bartelt-Kirbach B, Diebold R, Kampchen K, Langmesser S, Utermark T . Differential gene expression between human schwannoma and control Schwann cells. Neuropathol Appl Neurobiol. 2006; 32(6):605-14. DOI: 10.1111/j.1365-2990.2006.00769.x. View

2.
Rosenbaum C, Kluwe L, Mautner V, Friedrich R, Muller H, Hanemann C . Isolation and characterization of Schwann cells from neurofibromatosis type 2 patients. Neurobiol Dis. 1998; 5(1):55-64. DOI: 10.1006/nbdi.1998.0179. View

3.
Deacon S, Beeser A, Fukui J, Rennefahrt U, Myers C, Chernoff J . An isoform-selective, small-molecule inhibitor targets the autoregulatory mechanism of p21-activated kinase. Chem Biol. 2008; 15(4):322-31. PMC: 4353635. DOI: 10.1016/j.chembiol.2008.03.005. View

4.
Bokoch G . Biology of the p21-activated kinases. Annu Rev Biochem. 2003; 72:743-81. DOI: 10.1146/annurev.biochem.72.121801.161742. View

5.
Utermark T, Kaempchen K, Hanemann C . Pathological adhesion of primary human schwannoma cells is dependent on altered expression of integrins. Brain Pathol. 2003; 13(3):352-63. PMC: 8095832. DOI: 10.1111/j.1750-3639.2003.tb00034.x. View