» Articles » PMID: 19386275

Effects of Nanomaterial Physicochemical Properties on in Vivo Toxicity

Overview
Specialty Pharmacology
Date 2009 Apr 24
PMID 19386275
Citations 164
Authors
Affiliations
Soon will be listed here.
Abstract

It is well recognized that physical and chemical properties of materials can alter dramatically at nanoscopic scale, and the growing use of nanotechnologies requires careful assessment of unexpected toxicities and biological interactions. However, most in vivo toxicity concerns focus primarily on pulmonary, oral, and dermal exposures to ultrafine particles. As nanomaterials expand as therapeutics and as diagnostic tools, parenteral administration of engineered nanomaterials should also be recognized as a critical aspect for toxicity consideration. Due to the complex nature of nanomaterials, conflicting studies have led to different views of their safety. Here, the physicochemical properties of four representative nanomaterials (dendrimers, carbon nanotubes, quantum dots, and gold nanoparticles) as it relates to their toxicity after systemic exposure is discussed.

Citing Articles

Angiotensin II-Induced Hypertrophy in H9c2 Cells Reveals Severe Cytotoxicity of Graphene Oxide.

Luna-Figueroa E, Bernal-Ramirez J, Vazquez-Garza E, Huerta-Arcos L, Garcia-Rivas G, Contreras-Torres F ACS Omega. 2025; 10(7):7327-7337.

PMID: 40028060 PMC: 11866173. DOI: 10.1021/acsomega.4c11130.


Assessing gut barrier integrity and reproductive performance following pre-mating oral administration of solid-lipid-nanoparticles designed for drug delivery.

Lacconi V, Massimiani M, Antonello G, Gasco P, Bernardini R, Ferrari C Front Toxicol. 2025; 6():1508598.

PMID: 39839550 PMC: 11746049. DOI: 10.3389/ftox.2024.1508598.


ZnO Nanoparticles-Induced MRI Alterations to the Rat Olfactory Epithelium and Olfactory Bulb after Intranasal Instillation.

Gao L, Meng Y, Luo X, Chen J, Wang X Toxics. 2024; 12(10).

PMID: 39453144 PMC: 11511357. DOI: 10.3390/toxics12100724.


Autocatalytic bifunctional supramolecular hydrogels for osteoporotic bone repair.

Han Z, Gao X, Wang Y, Huang C, Song H, Cheng S Natl Sci Rev. 2024; 11(7):nwae209.

PMID: 39071098 PMC: 11275467. DOI: 10.1093/nsr/nwae209.


Advanced nanomaterials for imaging of eye diseases.

Nguyen V, Hu J, Zhe J, Ramasamy S, Ahmed U, Paulus Y ADMET DMPK. 2024; 12(2):269-298.

PMID: 38720929 PMC: 11075159. DOI: 10.5599/admet.2182.


References
1.
Tam J, Lu Y, Yang J . Antimicrobial dendrimeric peptides. Eur J Biochem. 2002; 269(3):923-32. DOI: 10.1046/j.0014-2956.2001.02728.x. View

2.
Mancini M, Kairdolf B, Smith A, Nie S . Oxidative quenching and degradation of polymer-encapsulated quantum dots: new insights into the long-term fate and toxicity of nanocrystals in vivo. J Am Chem Soc. 2008; 130(33):10836-7. PMC: 3743542. DOI: 10.1021/ja8040477. View

3.
Bhadra D, Bhadra S, Jain S, Jain N . A PEGylated dendritic nanoparticulate carrier of fluorouracil. Int J Pharm. 2003; 257(1-2):111-24. DOI: 10.1016/s0378-5173(03)00132-7. View

4.
Kam N, OConnell M, Wisdom J, Dai H . Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proc Natl Acad Sci U S A. 2005; 102(33):11600-5. PMC: 1187972. DOI: 10.1073/pnas.0502680102. View

5.
Fraczek A, Menaszek E, Paluszkiewicz C, Blazewicz M . Comparative in vivo biocompatibility study of single- and multi-wall carbon nanotubes. Acta Biomater. 2008; 4(6):1593-602. DOI: 10.1016/j.actbio.2008.05.018. View