Wulansari D, Jeelani G, Yazaki E, Nozaki T
mSphere. 2024; 9(9):e0034724.
PMID: 39189775
PMC: 11423594.
DOI: 10.1128/msphere.00347-24.
Dadara A, Nation C, Skelly P
BMC Infect Dis. 2024; 24(1):636.
PMID: 38918706
PMC: 11202380.
DOI: 10.1186/s12879-024-09538-z.
Dadara A, Nation C, Skelly P
bioRxiv. 2024; .
PMID: 38558993
PMC: 10980065.
DOI: 10.1101/2024.03.12.584659.
Shastak Y, Pelletier W
Animals (Basel). 2023; 13(22).
PMID: 38003171
PMC: 10668813.
DOI: 10.3390/ani13223554.
Murgia C, Dehlia A, Guthridge M
Nutr Metab (Lond). 2023; 20(1):42.
PMID: 37845732
PMC: 10580530.
DOI: 10.1186/s12986-023-00764-x.
Purification and characterization of recombinant FAD synthetase from .
Puvvada N, Gunde S, Ramana Devi C, Gogada R
Biochem Biophys Rep. 2021; 28:101161.
PMID: 34765745
PMC: 8571487.
DOI: 10.1016/j.bbrep.2021.101161.
Insights into the FMNAT Active Site of FAD Synthase: Aromaticity is Essential for Flavin Binding and Catalysis.
Serrano A, Arilla-Luna S, Medina M
Int J Mol Sci. 2020; 21(10).
PMID: 32466340
PMC: 7279473.
DOI: 10.3390/ijms21103738.
Mutation of Aspartate 238 in FAD Synthase Isoform 6 Increases the Specific Activity by Weakening the FAD Binding.
Leone P, Galluccio M, Quarta S, Anoz-Carbonell E, Medina M, Indiveri C
Int J Mol Sci. 2019; 20(24).
PMID: 31835305
PMC: 6941110.
DOI: 10.3390/ijms20246203.
Specific Features for the Competent Binding of Substrates at the FMN Adenylyltransferase Site of FAD Synthase from .
Arilla-Luna S, Serrano A, Medina M
Int J Mol Sci. 2019; 20(20).
PMID: 31614972
PMC: 6829536.
DOI: 10.3390/ijms20205083.
High-resolution crystal structure of human asparagine synthetase enables analysis of inhibitor binding and selectivity.
Zhu W, Radadiya A, Bisson C, Wenzel S, Nordin B, Martinez-Marquez F
Commun Biol. 2019; 2:345.
PMID: 31552298
PMC: 6748925.
DOI: 10.1038/s42003-019-0587-z.
Bacterial Production, Characterization and Protein Modeling of a Novel Monofuctional Isoform of FAD Synthase in Humans: An Emergency Protein?.
Leone P, Galluccio M, Barbiroli A, Eberini I, Tolomeo M, Vrenna F
Molecules. 2018; 23(1).
PMID: 29316637
PMC: 6017331.
DOI: 10.3390/molecules23010116.
The FAD synthetase from the human pathogen Streptococcus pneumoniae: a bifunctional enzyme exhibiting activity-dependent redox requirements.
Sebastian M, Lira-Navarrete E, Serrano A, Marcuello C, Velazquez-Campoy A, Lostao A
Sci Rep. 2017; 7(1):7609.
PMID: 28790457
PMC: 5548840.
DOI: 10.1038/s41598-017-07716-5.
Glycerol Phosphate Cytidylyltransferase Stereospecificity Is Key to Understanding the Distinct Stereochemical Compositions of Glycerophosphoinositol in Bacteria and Archaea.
Rodrigues M, Borges N, Santos H
Appl Environ Microbiol. 2016; 83(1).
PMID: 27795311
PMC: 5165115.
DOI: 10.1128/AEM.02462-16.
Riboflavin transport and metabolism in humans.
Barile M, Giancaspero T, Leone P, Galluccio M, Indiveri C
J Inherit Metab Dis. 2016; 39(4):545-57.
PMID: 27271694
DOI: 10.1007/s10545-016-9950-0.
Remaining challenges in cellular flavin cofactor homeostasis and flavoprotein biogenesis.
Giancaspero T, Colella M, Brizio C, Difonzo G, Fiorino G, Leone P
Front Chem. 2015; 3:30.
PMID: 25954742
PMC: 4406087.
DOI: 10.3389/fchem.2015.00030.
The "super mutant" of yeast FMN adenylyltransferase enhances the enzyme turnover rate by attenuating product inhibition.
Huerta C, Grishin N, Zhang H
Biochemistry. 2013; 52(21):3615-7.
PMID: 23663086
PMC: 3795796.
DOI: 10.1021/bi400454w.
Bacterial over-expression and purification of the 3'phosphoadenosine 5'phosphosulfate (PAPS) reductase domain of human FAD synthase: functional characterization and homology modeling.
Miccolis A, Galluccio M, Giancaspero T, Indiveri C, Barile M
Int J Mol Sci. 2013; 13(12):16880-98.
PMID: 23443125
PMC: 3546728.
DOI: 10.3390/ijms131216880.
Role of key residues at the flavin mononucleotide (FMN):adenylyltransferase catalytic site of the bifunctional riboflavin kinase/flavin adenine dinucleotide (FAD) Synthetase from Corynebacterium ammoniagenes.
Serrano A, Frago S, Velazquez-Campoy A, Medina M
Int J Mol Sci. 2012; 13(11):14492-517.
PMID: 23203077
PMC: 3509593.
DOI: 10.3390/ijms131114492.
Reverse structural genomics: an unusual flavin-binding site in a putative protease from Bacteroides thetaiotaomicron.
Knaus T, Eger E, Koop J, Stipsits S, Kinsland C, Ealick S
J Biol Chem. 2012; 287(33):27490-8.
PMID: 22718753
PMC: 3431682.
DOI: 10.1074/jbc.M112.355388.
Genetic control of biosynthesis and transport of riboflavin and flavin nucleotides and construction of robust biotechnological producers.
Abbas C, Sibirny A
Microbiol Mol Biol Rev. 2011; 75(2):321-60.
PMID: 21646432
PMC: 3122625.
DOI: 10.1128/MMBR.00030-10.