» Articles » PMID: 19373254

Molecular Discrimination of Structurally Equivalent Lys 63-linked and Linear Polyubiquitin Chains

Overview
Journal EMBO Rep
Specialty Molecular Biology
Date 2009 Apr 18
PMID 19373254
Citations 321
Authors
Affiliations
Soon will be listed here.
Abstract

At least eight types of ubiquitin chain exist, and individual linkages affect distinct cellular processes. The only distinguishing feature of differently linked ubiquitin chains is their structure, as polymers of the same unit are chemically identical. Here, we have crystallized Lys 63-linked and linear ubiquitin dimers, revealing that both adopt equivalent open conformations, forming no contacts between ubiquitin molecules and thereby differing significantly from Lys 48-linked ubiquitin chains. We also examined the specificity of various deubiquitinases (DUBs) and ubiquitin-binding domains (UBDs). All analysed DUBs, except CYLD, cleave linear chains less efficiently compared with other chain types, or not at all. Likewise, UBDs can show chain specificity, and are able to select distinct linkages from a ubiquitin chain mixture. We found that the UBAN (ubiquitin binding in ABIN and NEMO) motif of NEMO (NF-kappaB essential modifier) binds to linear chains exclusively, whereas the NZF (Npl4 zinc finger) domain of TAB2 (TAK1 binding protein 2) is Lys 63 specific. Our results highlight remarkable specificity determinants within the ubiquitin system.

Citing Articles

NEMO Family of Proteins as Polyubiquitin Receptors: Illustrating Non-Degradative Polyubiquitination's Roles in Health and Disease.

Wu C Cells. 2025; 14(4).

PMID: 39996775 PMC: 11854354. DOI: 10.3390/cells14040304.


Ablation of the deubiquitinating enzyme cylindromatosis (CYLD) augments STAT1-mediated M1 macrophage polarization and fosters control.

Schmidt C, Harit K, Traidl S, Naumann M, Werfel T, Roesner L Front Immunol. 2025; 16:1507989.

PMID: 39958342 PMC: 11827430. DOI: 10.3389/fimmu.2025.1507989.


Role of CYLD in brain physiology and pathology.

Nardi L, Bicker F, Maier J, Waisman A, Schmeisser M J Mol Med (Berl). 2025; 103(3):255-263.

PMID: 39945824 PMC: 11880164. DOI: 10.1007/s00109-025-02521-4.


Tsg101 mimicry of canonical E2 enzymes underlies its role in ubiquitin signaling.

Nyenhuis D, Watanabe S, Tjandra N, Carter C Proc Natl Acad Sci U S A. 2024; 122(1):e2419542121.

PMID: 39739800 PMC: 11725782. DOI: 10.1073/pnas.2419542121.


Rapid turnover of CTLA4 is associated with a complex architecture of reversible ubiquitylation.

Tey P, Dufner A, Knobeloch K, Pruneda J, Clague M, Urbe S J Cell Biol. 2024; 224(1).

PMID: 39404738 PMC: 11486831. DOI: 10.1083/jcb.202312141.


References
1.
Clague M, Urbe S . Endocytosis: the DUB version. Trends Cell Biol. 2006; 16(11):551-9. DOI: 10.1016/j.tcb.2006.09.002. View

2.
Kanayama A, Seth R, Sun L, Ea C, Hong M, Shaito A . TAB2 and TAB3 activate the NF-kappaB pathway through binding to polyubiquitin chains. Mol Cell. 2004; 15(4):535-48. DOI: 10.1016/j.molcel.2004.08.008. View

3.
Pickart C, Fushman D . Polyubiquitin chains: polymeric protein signals. Curr Opin Chem Biol. 2004; 8(6):610-6. DOI: 10.1016/j.cbpa.2004.09.009. View

4.
Eddins M, Varadan R, Fushman D, Pickart C, Wolberger C . Crystal structure and solution NMR studies of Lys48-linked tetraubiquitin at neutral pH. J Mol Biol. 2007; 367(1):204-11. DOI: 10.1016/j.jmb.2006.12.065. View

5.
Adhikari A, Xu M, Chen Z . Ubiquitin-mediated activation of TAK1 and IKK. Oncogene. 2007; 26(22):3214-26. DOI: 10.1038/sj.onc.1210413. View