» Articles » PMID: 19366797

Computationally Guided Photothermal Tumor Therapy Using Long-circulating Gold Nanorod Antennas

Overview
Journal Cancer Res
Specialty Oncology
Date 2009 Apr 16
PMID 19366797
Citations 243
Authors
Affiliations
Soon will be listed here.
Abstract

Plasmonic nanomaterials have the opportunity to considerably improve the specificity of cancer ablation by i.v. homing to tumors and acting as antennas for accepting externally applied energy. Here, we describe an integrated approach to improved plasmonic therapy composed of multimodal nanomaterial optimization and computational irradiation protocol development. We synthesized polyethylene glycol (PEG)-protected gold nanorods (NR) that exhibit superior spectral bandwidth, photothermal heat generation per gram of gold, and circulation half-life in vivo (t(1/2), approximately 17 hours) compared with the prototypical tunable plasmonic particles, gold nanoshells, as well as approximately 2-fold higher X-ray absorption than a clinical iodine contrast agent. After intratumoral or i.v. administration, we fuse PEG-NR biodistribution data derived via noninvasive X-ray computed tomography or ex vivo spectrometry, respectively, with four-dimensional computational heat transport modeling to predict photothermal heating during irradiation. In computationally driven pilot therapeutic studies, we show that a single i.v. injection of PEG-NRs enabled destruction of all irradiated human xenograft tumors in mice. These studies highlight the potential of integrating computational therapy design with nanotherapeutic development for ultraselective tumor ablation.

Citing Articles

Development of Intratumoral Drug Delivery Based Strategies for Antitumor Therapy.

Jiang Z, Fu Y, Shen H Drug Des Devel Ther. 2024; 18:2189-2202.

PMID: 38882051 PMC: 11179649. DOI: 10.2147/DDDT.S467835.


Metal nanoparticles for cancer therapy: Precision targeting of DNA damage.

Chen Q, Fang C, Xia F, Wang Q, Li F, Ling D Acta Pharm Sin B. 2024; 14(3):1132-1149.

PMID: 38486992 PMC: 10934341. DOI: 10.1016/j.apsb.2023.08.031.


Choice of Nanoparticles for Theranostics Engineering: Surface Coating to Nanovalves Approach.

Prasad R, Selvaraj K Nanotheranostics. 2024; 8(1):12-32.

PMID: 38164501 PMC: 10750116. DOI: 10.7150/ntno.89768.


Plasmonic Magnesium Nanoparticles Are Efficient Nanoheaters.

West C, Lomonosov V, Pehlivan Z, Ringe E Nano Lett. 2023; 23(23):10964-10970.

PMID: 38011145 PMC: 10722534. DOI: 10.1021/acs.nanolett.3c03219.


Plasmonic Nanoparticle-Enhanced Optical Techniques for Cancer Biomarker Sensing.

Fu L, Lin C, Karimi-Maleh H, Chen F, Zhao S Biosensors (Basel). 2023; 13(11).

PMID: 37998152 PMC: 10669140. DOI: 10.3390/bios13110977.


References
1.
Kim D, Park S, Lee J, Jeong Y, Jon S . Antibiofouling polymer-coated gold nanoparticles as a contrast agent for in vivo X-ray computed tomography imaging. J Am Chem Soc. 2007; 129(24):7661-5. DOI: 10.1021/ja071471p. View

2.
Hu M, Chen J, Li Z, Au L, Hartland G, Li X . Gold nanostructures: engineering their plasmonic properties for biomedical applications. Chem Soc Rev. 2006; 35(11):1084-94. DOI: 10.1039/b517615h. View

3.
Cai Q, Kim S, Choi K, Kim S, Byun S, Kim K . Colloidal gold nanoparticles as a blood-pool contrast agent for X-ray computed tomography in mice. Invest Radiol. 2007; 42(12):797-806. DOI: 10.1097/RLI.0b013e31811ecdcd. View

4.
Murphy C, Sau T, Gole A, Orendorff C, Gao J, Gou L . Anisotropic metal nanoparticles: Synthesis, assembly, and optical applications. J Phys Chem B. 2006; 109(29):13857-70. DOI: 10.1021/jp0516846. View

5.
Niidome T, Yamagata M, Okamoto Y, Akiyama Y, Takahashi H, Kawano T . PEG-modified gold nanorods with a stealth character for in vivo applications. J Control Release. 2006; 114(3):343-7. DOI: 10.1016/j.jconrel.2006.06.017. View