» Articles » PMID: 19319893

MR Spectroscopy of the Human Brain with Enhanced Signal Intensity at Ultrashort Echo Times on a Clinical Platform at 3T and 7T

Overview
Journal Magn Reson Med
Publisher Wiley
Specialty Radiology
Date 2009 Mar 26
PMID 19319893
Citations 150
Authors
Affiliations
Soon will be listed here.
Abstract

Recently, the spin-echo full-intensity acquired localized (SPECIAL) spectroscopy technique was proposed to unite the advantages of short TEs on the order of milliseconds (ms) with full sensitivity and applied to in vivo rat brain. In the present study, SPECIAL was adapted and optimized for use on a clinical platform at 3T and 7T by combining interleaved water suppression (WS) and outer volume saturation (OVS), optimized sequence timing, and improved shimming using FASTMAP. High-quality single voxel spectra of human brain were acquired at TEs below or equal to 6 ms on a clinical 3T and 7T system for six volunteers. Narrow linewidths (6.6 +/- 0.6 Hz at 3T and 12.1 +/- 1.0 Hz at 7T for water) and the high signal-to-noise ratio (SNR) of the artifact-free spectra enabled the quantification of a neurochemical profile consisting of 18 metabolites with Cramér-Rao lower bounds (CRLBs) below 20% at both field strengths. The enhanced sensitivity and increased spectral resolution at 7T compared to 3T allowed a two-fold reduction in scan time, an increased precision of quantification for 12 metabolites, and the additional quantification of lactate with CRLB below 20%. Improved sensitivity at 7T was also demonstrated by a 1.7-fold increase in average SNR (= peak height/root mean square [RMS]-of-noise) per unit-time.

Citing Articles

Evaluation of Glutathione T in the Human Brain Using J-Difference MRS at 3 T: Multicenter Multivendor Study.

Choi G, Kim S, Noeske R, Moore J, Lee G, Kim J NMR Biomed. 2025; 38(2):e5313.

PMID: 39776150 PMC: 11707642. DOI: 10.1002/nbm.5313.


Challenges of Investigating Compartmentalized Brain Energy Metabolism Using Nuclear Magnetic Resonance Spectroscopy in vivo.

Duarte J Neurochem Res. 2025; 50(1):73.

PMID: 39754627 PMC: 11700056. DOI: 10.1007/s11064-024-04324-4.


Macromolecule Modelling for Improved Metabolite Quantification Using Short Echo Time Brain H-MRS at 3 T and 7 T: The PRaMM Model.

DellOrco A, Riemann L, Ellison S, Aydin S, Goschel L, Ittermann B NMR Biomed. 2024; 38(1):e5299.

PMID: 39701127 PMC: 11658865. DOI: 10.1002/nbm.5299.


Effect of chewing hard material on boosting brain antioxidant levels and enhancing cognitive function.

Kim S, Kim J, Lee H, Jang S, Noeske R, Choi C Front Syst Neurosci. 2024; 18:1489919.

PMID: 39664997 PMC: 11632103. DOI: 10.3389/fnsys.2024.1489919.


Plasma p-tau181 and GFAP reflect 7T MR-derived changes in Alzheimer's disease: A longitudinal study of structural and functional MRI and MRS.

Goschel L, DellOrco A, Fillmer A, Aydin S, Ittermann B, Riemann L Alzheimers Dement. 2024; 20(12):8684-8699.

PMID: 39558898 PMC: 11667506. DOI: 10.1002/alz.14318.