» Articles » PMID: 19273841

A Family of Salmonella Virulence Factors Functions As a Distinct Class of Autoregulated E3 Ubiquitin Ligases

Overview
Specialty Science
Date 2009 Mar 11
PMID 19273841
Citations 99
Authors
Affiliations
Soon will be listed here.
Abstract

Processes as diverse as receptor binding and signaling, cytoskeletal dynamics, and programmed cell death are manipulated by mimics of host proteins encoded by pathogenic bacteria. We show here that the Salmonella virulence factor SspH2 belongs to a growing class of bacterial effector proteins that harness and subvert the eukaryotic ubiquitination pathway. This virulence protein possesses ubiquitination activity that depends on a conserved cysteine residue. A crystal structure of SspH2 reveals a canonical leucine-rich repeat (LRR) domain that interacts with a unique E3 ligase [which we have termed NEL for Novel E3 Ligase] C-terminal fold unrelated to previously observed HECT or RING-finger E3 ligases. Moreover, the LRR domain sequesters the catalytic cysteine residue contained in the NEL domain, and we suggest a mechanism for activation of the ligase requiring a substantial conformational change to release the catalytic domain for function. We also show that the N-terminal domain targets SspH2 to the apical plasma membrane of polarized epithelial cells and propose a model whereby binding of the LRR to proteins at the target site releases the ligase domain for site-specific function.

Citing Articles

A functional screen for ubiquitin regulation identifies an E3 ligase secreted by .

Roberts C, Kaur S, Ogden A, Divine M, Warren G, Kang D bioRxiv. 2024; .

PMID: 39345563 PMC: 11430079. DOI: 10.1101/2024.09.18.613774.


The Effector SspH2 Facilitates Spatially Selective Ubiquitination of NOD1 to Enhance Inflammatory Signaling.

Delyea C, Forster M, Luo S, Dubrule B, Julien O, Bhavsar A Biochemistry. 2024; 63(18):2266-2279.

PMID: 39189508 PMC: 11412229. DOI: 10.1021/acs.biochem.4c00380.


The emerging role and therapeutic implications of bacterial and parasitic deubiquitinating enzymes.

Wehrmann M, Vilchez D Front Immunol. 2023; 14:1303072.

PMID: 38077335 PMC: 10703165. DOI: 10.3389/fimmu.2023.1303072.


Ubiquitin-targeted bacterial effectors: rule breakers of the ubiquitin system.

Roberts C, Franklin T, Pruneda J EMBO J. 2023; 42(18):e114318.

PMID: 37555693 PMC: 10505922. DOI: 10.15252/embj.2023114318.


Speaking the host language: how effector proteins manipulate the host.

Pillay T, Hettiarachchi S, Gan J, Diaz-Del-Olmo I, Yu X, Muench J Microbiology (Reading). 2023; 169(6).

PMID: 37279149 PMC: 10333799. DOI: 10.1099/mic.0.001342.


References
1.
Horn M, Collingro A, Schmitz-Esser S, Beier C, Purkhold U, Fartmann B . Illuminating the evolutionary history of chlamydiae. Science. 2004; 304(5671):728-30. DOI: 10.1126/science.1096330. View

2.
Kubori T, Galan J . Temporal regulation of salmonella virulence effector function by proteasome-dependent protein degradation. Cell. 2003; 115(3):333-42. DOI: 10.1016/s0092-8674(03)00849-3. View

3.
Singer A, Rohde J, Lam R, Skarina T, Kagan O, Dileo R . Structure of the Shigella T3SS effector IpaH defines a new class of E3 ubiquitin ligases. Nat Struct Mol Biol. 2008; 15(12):1293-301. PMC: 2764551. DOI: 10.1038/nsmb.1511. View

4.
Ingham R, Gish G, Pawson T . The Nedd4 family of E3 ubiquitin ligases: functional diversity within a common modular architecture. Oncogene. 2004; 23(11):1972-84. DOI: 10.1038/sj.onc.1207436. View

5.
dAzzo A, Bongiovanni A, Nastasi T . E3 ubiquitin ligases as regulators of membrane protein trafficking and degradation. Traffic. 2005; 6(6):429-41. DOI: 10.1111/j.1600-0854.2005.00294.x. View