» Articles » PMID: 19266054

Pharmacogenetics of Ophthalmic Topical Beta-blockers

Overview
Journal Per Med
Date 2009 Mar 7
PMID 19266054
Citations 5
Authors
Affiliations
Soon will be listed here.
Abstract

Glaucoma is the second leading cause of blindness worldwide. The primary glaucoma risk factor is elevated intraocular pressure. Topical beta-blockers are affordable and widely used to lower intraocular pressure. Genetic variability has been postulated to contribute to interpersonal differences in efficacy and safety of topical beta-blockers. This review summarizes clinically significant polymorphisms that have been identified in the beta-adrenergic receptors (ADRB1, ADRB2 and ADRB3). The implications of polymorphisms in CYP2D6 are also discussed. Although the candidate-gene approach has facilitated significant progress in our understanding of the genetic basis of glaucoma treatment response, most drug responses involve a large number of genes, each containing multiple polymorphisms. Genome-wide association studies may yield a more comprehensive set of polymorphisms associated with glaucoma outcomes. An understanding of the genetic mechanisms associated with variability in individual responses to topical beta-blockers may advance individualized treatment at a lower cost.

Citing Articles

The Identification of New Pharmacological Targets for the Treatment of Glaucoma: A Network Pharmacology Approach.

Giuffrida E, Platania C, Lazzara F, Conti F, Marcantonio N, Drago F Pharmaceuticals (Basel). 2024; 17(10).

PMID: 39458974 PMC: 11509888. DOI: 10.3390/ph17101333.


Gene therapy for glaucoma: Targeting key mechanisms.

Henderson J, OCallaghan J, Campbell M Vision Res. 2024; 225:108502.

PMID: 39423611 PMC: 11579448. DOI: 10.1016/j.visres.2024.108502.


Genotype and Phenotype Influence the Personal Response to Prostaglandin Analogues and Beta-Blockers in Spanish Glaucoma and Ocular Hypertension Patients.

Opazo-Toro V, Fortuna V, Jimenez W, Pazos Lopez M, Royo M, Ventura-Abreu N Int J Mol Sci. 2023; 24(3).

PMID: 36768422 PMC: 9916755. DOI: 10.3390/ijms24032093.


Repurposing Ophthalmologic Timolol for Dermatologic Use: Caveats and Historical Review of Adverse Events.

Yoon D, Kaur R, Gallegos A, West K, Yang H, Schaefer S Am J Clin Dermatol. 2020; 22(1):89-99.

PMID: 33237496 DOI: 10.1007/s40257-020-00567-3.


In vitro and in vivo efficacy of SYL040012, a novel siRNA compound for treatment of glaucoma.

Martinez T, Gonzalez M, Roehl I, Wright N, Paneda C, Jimenez A Mol Ther. 2013; 22(1):81-91.

PMID: 24025749 PMC: 3978804. DOI: 10.1038/mt.2013.216.

References
1.
McLaren N, Moroi S . Clinical implications of pharmacogenetics for glaucoma therapeutics. Pharmacogenomics J. 2003; 3(4):197-201. DOI: 10.1038/sj.tpj.6500181. View

2.
Nieminen T, Uusitalo H, Maenpaa J, Turjanmaa V, Rane A, Lundgren S . Polymorphisms of genes CYP2D6, ADRB1 and GNAS1 in pharmacokinetics and systemic effects of ophthalmic timolol. A pilot study. Eur J Clin Pharmacol. 2005; 61(11):811-9. DOI: 10.1007/s00228-005-0052-4. View

3.
Stoilov I, Akarsu A, Sarfarazi M . Identification of three different truncating mutations in cytochrome P4501B1 (CYP1B1) as the principal cause of primary congenital glaucoma (Buphthalmos) in families linked to the GLC3A locus on chromosome 2p21. Hum Mol Genet. 1997; 6(4):641-7. DOI: 10.1093/hmg/6.4.641. View

4.
Zimmerman T, Harbin R, Pett M, Kaufman H . Timolol and facility of outflow. Invest Ophthalmol Vis Sci. 1977; 16(7):623-4. View

5.
Idrees F, Vaideanu D, Fraser S, Sowden J, Khaw P . A review of anterior segment dysgeneses. Surv Ophthalmol. 2006; 51(3):213-31. DOI: 10.1016/j.survophthal.2006.02.006. View