» Articles » PMID: 19265799

Universal Protein-binding Microarrays for the Comprehensive Characterization of the DNA-binding Specificities of Transcription Factors

Overview
Journal Nat Protoc
Specialties Biology
Pathology
Science
Date 2009 Mar 7
PMID 19265799
Citations 205
Authors
Affiliations
Soon will be listed here.
Abstract

Protein-binding microarray (PBM) technology provides a rapid, high-throughput means of characterizing the in vitro DNA-binding specificities of transcription factors (TFs). Using high-density, custom-designed microarrays containing all 10-mer sequence variants, one can obtain comprehensive binding-site measurements for any TF, regardless of its structural class or species of origin. Here, we present a protocol for the examination and analysis of TF-binding specificities at high resolution using such 'all 10-mer' universal PBMs. This procedure involves double-stranding a commercially synthesized DNA oligonucleotide array, binding a TF directly to the double-stranded DNA microarray and labeling the protein-bound microarray with a fluorophore-conjugated antibody. We describe how to computationally extract the relative binding preferences of the examined TF for all possible contiguous and gapped 8-mers over the full range of affinities, from highest affinity sites to nonspecific sites. Multiple proteins can be tested in parallel in separate chambers on a single microarray, enabling the processing of a dozen or more TFs in a single day.

Citing Articles

Abundant clock proteins point to missing molecular regulation in the plant circadian clock.

Urquiza-Garcia U, Molina N, Halliday K, Millar A Mol Syst Biol. 2025; .

PMID: 39979593 DOI: 10.1038/s44320-025-00086-5.


A systematic survey of TF function in E. coli suggests RNAP stabilization is a prevalent strategy for both repressors and activators.

Guharajan S, Parisutham V, Brewster R Nucleic Acids Res. 2025; 53(4).

PMID: 39921566 PMC: 11806353. DOI: 10.1093/nar/gkaf058.


Further Development of SAMPDI-3D: A Machine Learning Method for Predicting Binding Free Energy Changes Caused by Mutations in Either Protein or DNA.

Rimal P, Paul S, Panday S, Alexov E Genes (Basel). 2025; 16(1).

PMID: 39858648 PMC: 11764785. DOI: 10.3390/genes16010101.


Protein target search diffusion-association/dissociation free energy landscape around DNA binding site with flanking sequences.

Wan B, Yu J Biophys J. 2025; 124(4):677-692.

PMID: 39818622 PMC: 11900189. DOI: 10.1016/j.bpj.2025.01.005.


Multiomic profiling of chronically activated CD4+ T cells identifies drivers of exhaustion and metabolic reprogramming.

Lawton M, Inge M, Blum B, Smith-Mahoney E, Bolzan D, Lin W PLoS Biol. 2024; 22(12):e3002943.

PMID: 39689157 PMC: 11703073. DOI: 10.1371/journal.pbio.3002943.


References
1.
De Silva E, Gehrke A, Olszewski K, Leon I, Chahal J, Bulyk M . Specific DNA-binding by apicomplexan AP2 transcription factors. Proc Natl Acad Sci U S A. 2008; 105(24):8393-8. PMC: 2423414. DOI: 10.1073/pnas.0801993105. View

2.
Iyer V, Horak C, Scafe C, Botstein D, Snyder M, Brown P . Genomic binding sites of the yeast cell-cycle transcription factors SBF and MBF. Nature. 2001; 409(6819):533-8. DOI: 10.1038/35054095. View

3.
Wingender E, Chen X, Hehl R, Karas H, Liebich I, Matys V . TRANSFAC: an integrated system for gene expression regulation. Nucleic Acids Res. 1999; 28(1):316-9. PMC: 102445. DOI: 10.1093/nar/28.1.316. View

4.
Reece-Hoyes J, Deplancke B, Shingles J, Grove C, Hope I, Walhout A . A compendium of Caenorhabditis elegans regulatory transcription factors: a resource for mapping transcription regulatory networks. Genome Biol. 2006; 6(13):R110. PMC: 1414109. DOI: 10.1186/gb-2005-6-13-r110. View

5.
Linnell J, Mott R, Field S, Kwiatkowski D, Ragoussis J, Udalova I . Quantitative high-throughput analysis of transcription factor binding specificities. Nucleic Acids Res. 2004; 32(4):e44. PMC: 390317. DOI: 10.1093/nar/gnh042. View