Molecular Imaging of Bcr-Abl Phosphokinase in a Xenograft Model
Overview
Affiliations
The purpose of this study was to determine whether the Bcr-Abl tyrosine kinase can be assessed by gamma-imaging using an 111In-labeled anti-phosphotyrosine (APT) antibody, and if the response to treatment with imatinib could be detected using this imaging technique. APT antibody was labeled with 111In using ethylenedicysteine (EC) as a chelator. To determine if 111In-EC-APT could assess a nonreceptor tyrosine kinase, xenografts of the human chronic myelogenous leukemia cell line K562 were used. gamma-Scintigraphy of the tumor-bearing mice, before and after imatinib treatment, was obtained 1, 24, and 48 h after they were given 111In-EC-APT (100 microCi/mouse i.v.). 111In-EC-APT is preferentially taken up by Bcr-Abl-bearing tumor cells when compared with 111In-EC-BSA or 111In-EC-IgG1 controls and comparable with the level of uptake of 111In-EC-Bcr-Abl. Imatinib treatment resulted in decreased expression of phospho-Bcr-Abl by Western blot analysis, which correlated with early (4 days after starting imatinib) kinase down-regulation as assessed by imaging using 111In-EC-APT. The optimal time to imaging was 24 and 48 h after injection of 111In-EC-APT. Although tumor regression was insignificant on day 4 after starting imatinib treatment, it was marked by day 14. 111In-EC-APT can assess intracellular phosphokinase activity, and down-regulation of phosphokinase activity predates tumor regression. This technique may therefore be useful in the clinic to detect the presence of phosphokinase activity and for early prediction of response.
Mukai-Sasaki Y, Liao Z, Yang D, Inoue T Front Oncol. 2023; 12:984364.
PMID: 36591530 PMC: 9797663. DOI: 10.3389/fonc.2022.984364.