» Articles » PMID: 19223058

Covalent Labeling of Nuclear Vitamin D Receptor with Affinity Labeling Reagents Containing a Cross-linking Probe at Three Different Positions of the Parent Ligand: Structural and Biochemical Implications

Overview
Journal Bioorg Chem
Publisher Elsevier
Specialties Biochemistry
Chemistry
Date 2009 Feb 19
PMID 19223058
Citations 3
Authors
Affiliations
Soon will be listed here.
Abstract

Structure-functional characterization of vitamin D receptor (VDR) requires identification of structurally distinct areas of VDR-ligand-binding domain (VDR-LBD) important for biological properties of 1alpha,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3)). We hypothesized that covalent attachment of the ligand into VDR-LBD might alter 'surface structure' of that area influencing biological activity of the ligand. We compared anti-proliferative activity of three affinity alkylating derivatives of 1,25(OH)(2)D(3) containing an alkylating probe at 1,3 and 11 positions. These compounds possessed high-affinity binding for VDR; and affinity labeled VDR-LBD. But, only the analog with probe at 3-position significantly altered growth in keratinocytes, compared with 1,25(OH)(2)D(3). Molecular models of these analogs, docked inside VDR-LBD tentatively identified Ser237 (helix-3: 1,25(OH)(2)D(3)-1-BE), Cys288 (beta-hairpin region: 1,25(OH)(2)D(3)-3-BE,) and Tyr295 (helix-6: 1,25(OH)(2)D(3)-11-BE,) as amino acids that are potentially modified by these reagents. Therefore, we conclude that the beta-hairpin region (modified by 1,25(OH)(2)D(3)-3-BE) is most important for growth inhibition by 1,25(OH)(2)D(3), while helices 3 and 6 are less important for such activity.

Citing Articles

Computational Investigation of Selected Spike Protein Mutations in SARS-CoV-2: Delta, Omicron, and Some Circulating Subvariants.

Roy U Pathogens. 2024; 13(1).

PMID: 38276156 PMC: 10820870. DOI: 10.3390/pathogens13010010.


Structural and molecular analyses of functional epitopes and escape mutants in Japanese encephalitis virus envelope protein domain III.

Roy U Immunol Res. 2020; 68(2):81-89.

PMID: 32445181 PMC: 7243247. DOI: 10.1007/s12026-020-09130-y.


1α,25-Dihydroxyvitamin D3-3β-bromoacetate, a potential cancer therapeutic agent: synthesis and molecular mechanism of action.

Ray R, Lambert J Bioorg Med Chem Lett. 2011; 21(8):2537-40.

PMID: 21392983 PMC: 3073821. DOI: 10.1016/j.bmcl.2011.02.025.

References
1.
Eelen G, Gysemans C, Verlinden L, Vanoirbeek E, De Clercq P, Van Haver D . Mechanism and potential of the growth-inhibitory actions of vitamin D and ana-logs. Curr Med Chem. 2007; 14(17):1893-910. DOI: 10.2174/092986707781058823. View

2.
Rochel N, Wurtz J, Mitschler A, Klaholz B, Moras D . The crystal structure of the nuclear receptor for vitamin D bound to its natural ligand. Mol Cell. 2000; 5(1):173-9. DOI: 10.1016/s1097-2765(00)80413-x. View

3.
Palomer X, Gonzalez-Clemente J, Blanco-Vaca F, Mauricio D . Role of vitamin D in the pathogenesis of type 2 diabetes mellitus. Diabetes Obes Metab. 2008; 10(3):185-97. DOI: 10.1111/j.1463-1326.2007.00710.x. View

4.
Ray R, Rose S, Holick S, Holick M . Evaluation of a photolabile derivative of 1,25-dihydroxyvitamin D3 as a photoaffinity probe for 1,25-dihydroxyvitamin-D3 receptor in chick intestinal cytosol. Biochem Biophys Res Commun. 1985; 132(1):198-203. DOI: 10.1016/0006-291x(85)91007-1. View

5.
Vaisanen S, Perakyla M, Karkkainen J, Steinmeyer A, Carlberg C . Critical role of helix 12 of the vitamin D(3) receptor for the partial agonism of carboxylic ester antagonists. J Mol Biol. 2002; 315(2):229-38. DOI: 10.1006/jmbi.2001.5225. View