» Articles » PMID: 19207571

Comparative Day/night Metatranscriptomic Analysis of Microbial Communities in the North Pacific Subtropical Gyre

Overview
Date 2009 Feb 12
PMID 19207571
Citations 124
Authors
Affiliations
Soon will be listed here.
Abstract

Metatranscriptomic analyses of microbial assemblages (< 5 microm) from surface water at the Hawaiian Ocean Time-Series (HOT) revealed community-wide metabolic activities and day/night patterns of differential gene expression. Pyrosequencing produced 75 558 putative mRNA reads from a day transcriptome and 75 946 from a night transcriptome. Taxonomic binning of annotated mRNAs indicated that Cyanobacteria contributed a greater percentage of the transcripts (54% of annotated sequences) than expected based on abundance (35% of cell counts and 21% 16S rRNA of libraries), and may represent the most actively transcribing cells in this surface ocean community in both the day and night. Major heterotrophic taxa contributing to the community transcriptome included alpha-Proteobacteria (19% of annotated sequences, most of which were SAR11-related) and gamma-Proteobacteria (4%). The composition of transcript pools was consistent with models of prokaryotic gene expression, including operon-based transcription patterns and an abundance of genes predicted to be highly expressed. Metabolic activities that are shared by many microbial taxa (e.g. glycolysis, citric acid cycle, amino acid biosynthesis and transcription and translation machinery) were well represented among the community transcripts. There was an overabundance of transcripts for photosynthesis, C1 metabolism and oxidative phosphorylation in the day compared with night, and evidence that energy acquisition is coordinated with solar radiation levels for both autotrophic and heterotrophic microbes. In contrast, housekeeping activities such as amino acid biosynthesis, membrane synthesis and repair, and vitamin biosynthesis were overrepresented in the night transcriptome. Direct sequencing of these environmental transcripts has provided detailed information on metabolic and biogeochemical responses of a microbial community to solar forcing.

Citing Articles

Prokaryotic morphological features and maintenance activities governed by seasonal productivity conditions.

Verma A, Amnebrink D, Lee C, Nyunt Wai S, Sandblad L, Pinhassi J FEMS Microbiol Ecol. 2024; 100(11).

PMID: 39264060 PMC: 11556340. DOI: 10.1093/femsec/fiae121.


The diel disconnect between cell growth and division in is interrupted by giant virus infection.

Truchon A, Chase E, Stark A, Wilhelm S Front Microbiol. 2024; 15:1426193.

PMID: 39234538 PMC: 11371579. DOI: 10.3389/fmicb.2024.1426193.


Transcriptional activity differentiates families of Marine Group II Euryarchaeota in the coastal ocean.

Damashek J, Okotie-Oyekan A, Gifford S, Vorobev A, Moran M, Hollibaugh J ISME Commun. 2023; 1(1):5.

PMID: 37938231 PMC: 9723583. DOI: 10.1038/s43705-021-00002-6.


Functional annotation and importance of marine bacterial transporters of plankton exometabolites.

Schroer W, Kepner H, Uchimiya M, Mejia C, Trujillo Rodriguez L, Reisch C ISME Commun. 2023; 3(1):37.

PMID: 37185952 PMC: 10130141. DOI: 10.1038/s43705-023-00244-6.


Differential Timing for Glucose Assimilation in and Coexistent Microbial Populations in the North Pacific Subtropical Gyre.

Del Carmen Munoz-Marin M, Duhamel S, Bjorkman K, Magasin J, Diez J, Karl D Microbiol Spectr. 2022; 10(5):e0246622.

PMID: 36098532 PMC: 9602893. DOI: 10.1128/spectrum.02466-22.