» Articles » PMID: 19202068

Micromagnetic Selection of Aptamers in Microfluidic Channels

Overview
Specialty Science
Date 2009 Feb 10
PMID 19202068
Citations 110
Authors
Affiliations
Soon will be listed here.
Abstract

Aptamers are nucleic acid molecules that have been selected in vitro to bind to their molecular targets with high affinity and specificity. Typically, the systematic evolution of ligands by exponential enrichment (SELEX) process is used for the isolation of specific, high-affinity aptamers. SELEX, however, is an iterative process requiring multiple rounds of selection and amplification that demand significant time and labor. Here, we describe an aptamer discovery system that is rapid, highly efficient, automatable, and applicable to a wide range of targets, based on the integration of magnetic bead-based SELEX process with microfluidics technology. Our microfluidic SELEX (M-SELEX) method exploits a number of unique phenomena that occur at the microscale and implements a design that enables it to manipulate small numbers of beads precisely and isolate high-affinity aptamers rapidly. As a model to demonstrate the efficiency of the M-SELEX process, we describe here the isolation of DNA aptamers that tightly bind to the light chain of recombinant Botulinum neurotoxin type A (with low-nanomolar dissociation constant) after a single round of selection.

Citing Articles

A new method for the reproducible development of aptamers (Neomers).

Meehan C, Hamilton E, Mansour C, Lecocq S, Drake C, An Y PLoS One. 2025; 20(2):e0311497.

PMID: 39937840 PMC: 11819540. DOI: 10.1371/journal.pone.0311497.


Recent advances in aptamer discovery, modification and improving performance.

Fallah A, Fooladi A, Havaei S, Mahboobi M, Sedighian H Biochem Biophys Rep. 2024; 40:101852.

PMID: 39525567 PMC: 11546948. DOI: 10.1016/j.bbrep.2024.101852.


Current developments of SELEX technologies and prospects in the aptamer selection with clinical applications.

Chinchilla-Cardenas D, Cruz-Mendez J, Petano-Duque J, Garcia R, Castro L, Lobo-Castanon M J Genet Eng Biotechnol. 2024; 22(3):100400.

PMID: 39179327 PMC: 11338109. DOI: 10.1016/j.jgeb.2024.100400.


Computational Frontiers in Aptamer-Based Nanomedicine for Precision Therapeutics: A Comprehensive Review.

Kumar S, Mohan A, Sharma N, Kumar A, Girdhar M, Malik T ACS Omega. 2024; 9(25):26838-26862.

PMID: 38947800 PMC: 11209897. DOI: 10.1021/acsomega.4c02466.


Recent Advances in Aptamer-Based Biosensors for Bacterial Detection.

Leguillier V, Heddi B, Vidic J Biosensors (Basel). 2024; 14(5).

PMID: 38785684 PMC: 11117931. DOI: 10.3390/bios14050210.


References
1.
Nitsche A, Kurth A, Dunkhorst A, Panke O, Sielaff H, Junge W . One-step selection of Vaccinia virus-binding DNA aptamers by MonoLEX. BMC Biotechnol. 2007; 7:48. PMC: 1994675. DOI: 10.1186/1472-6750-7-48. View

2.
Cox J, Ellington A . Automated selection of anti-protein aptamers. Bioorg Med Chem. 2001; 9(10):2525-31. DOI: 10.1016/s0968-0896(01)00028-1. View

3.
Ravelet C, Grosset C, Peyrin E . Liquid chromatography, electrochromatography and capillary electrophoresis applications of DNA and RNA aptamers. J Chromatogr A. 2006; 1117(1):1-10. DOI: 10.1016/j.chroma.2006.03.101. View

4.
Willner I, Zayats M . Electronic aptamer-based sensors. Angew Chem Int Ed Engl. 2007; 46(34):6408-18. DOI: 10.1002/anie.200604524. View

5.
Kirby R, Cho E, Gehrke B, Bayer T, Park Y, Neikirk D . Aptamer-based sensor arrays for the detection and quantitation of proteins. Anal Chem. 2004; 76(14):4066-75. DOI: 10.1021/ac049858n. View