» Articles » PMID: 19190631

Overexpressed Vs Mutated Kras in Murine Fibroblasts: a Molecular Phenotyping Study

Overview
Journal Br J Cancer
Specialty Oncology
Date 2009 Feb 5
PMID 19190631
Citations 13
Authors
Affiliations
Soon will be listed here.
Abstract

Ras acts in signalling pathways regulating the activity of multiple cellular functions including cell proliferation, differentiation, and apoptosis. Amino-acid exchanges at position 12, 13, or 61 of the Kras gene convert the proto-oncogene into an activated oncogene. Until now, a direct comparison of genome-wide expression profiling studies of Kras overexpression and different Kras mutant forms in a single assay system has not been carried out. In our study, we focused on the direct comparison of global gene expression effects caused by mutations in codon 12 or 13 of the Kras gene and Kras overexpression in murine fibroblasts. We determined Kras cellular mRNA, Ras protein and activated Ras protein levels. Further, we compared our data to the proteome analysis of the same transfected cell lines. Both overexpression and mutations of Kras lead to common altered gene expression patterns. Only two genes, Lox and Col1a1, were reversely regulated in the Kras transfectants. They may contribute to the higher aggressiveness of the Kras codon 12 mutation in tumour progression. The functional annotation of differentially expressed genes revealed a high frequency of proteins involved in tumour growth and angiogenesis. These data further support the important role of these genes in tumour-associated angiogenesis.

Citing Articles

An integrated model for predicting KRAS dependency.

Tsai Y, Chareddy Y, Price B, Parker J, Pecot C PLoS Comput Biol. 2023; 19(5):e1011095.

PMID: 37141389 PMC: 10187917. DOI: 10.1371/journal.pcbi.1011095.


Biglycan as a potential regulator of tumorgenicity and immunogenicity in K-RAS-transformed cells.

Subbarayan K, Massa C, Leisz S, Steven A, Bethmann D, Biehl K Oncoimmunology. 2022; 11(1):2069214.

PMID: 35529675 PMC: 9067524. DOI: 10.1080/2162402X.2022.2069214.


Regulation of KRAS protein expression by miR-544a and KRAS-LCS6 polymorphism in wild-type KRAS sporadic colon adenocarcinoma.

Marinovic S, Skrtic A, Catela Ivkovic T, Poljak M, Kapitanovic S Hum Cell. 2021; 34(5):1455-1465.

PMID: 34235620 DOI: 10.1007/s13577-021-00576-2.


eVIP2: Expression-based variant impact phenotyping to predict the function of gene variants.

Thornton A, Fang L, Lo A, McSharry M, Haan D, OBrien C PLoS Comput Biol. 2021; 17(7):e1009132.

PMID: 34214079 PMC: 8281988. DOI: 10.1371/journal.pcbi.1009132.


KRAS mutant rectal cancer cells interact with surrounding fibroblasts to deplete the extracellular matrix.

Kim J, Marco M, Choi S, Qu X, Chen C, Elkabets M Mol Oncol. 2021; 15(10):2766-2781.

PMID: 33817986 PMC: 8486594. DOI: 10.1002/1878-0261.12960.


References
1.
Recktenwald C, Mendler S, Lichtenfels R, Kellner R, Seliger B . Influence of Ki-ras-driven oncogenic transformation on the protein network of murine fibroblasts. Proteomics. 2007; 7(3):385-98. DOI: 10.1002/pmic.200600506. View

2.
Downward J . Control of ras activation. Cancer Surv. 1996; 27:87-100. View

3.
Wittinghofer F . Ras signalling. Caught in the act of the switch-on. Nature. 1998; 394(6691):317, 319-20. DOI: 10.1038/28492. View

4.
Slack J, Parker M, Robinson V, Bornstein P . Regulation of collagen I gene expression by ras. Mol Cell Biol. 1992; 12(10):4714-23. PMC: 360398. DOI: 10.1128/mcb.12.10.4714-4723.1992. View

5.
Eisen M, Spellman P, Brown P, Botstein D . Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci U S A. 1998; 95(25):14863-8. PMC: 24541. DOI: 10.1073/pnas.95.25.14863. View