Scott-Solomon E, Boehm E, Kuruvilla R
Nat Rev Neurosci. 2021; 22(11):685-702.
PMID: 34599308
PMC: 8530968.
DOI: 10.1038/s41583-021-00523-y.
Ahmed N, Knowles R, Dehorter N
Front Mol Neurosci. 2019; 12:204.
PMID: 31551706
PMC: 6736589.
DOI: 10.3389/fnmol.2019.00204.
Simeone X, Karch R, Ciuraszkiewicz A, Orr-Urtreger A, Lemmens-Gruber R, Scholze P
Physiol Rep. 2019; 7(6):e14023.
PMID: 30891952
PMC: 6424856.
DOI: 10.14814/phy2.14023.
Chong Y, Saviuk N, Pie B, Basisty N, Quinn R, Schilling B
Cell Rep. 2018; 23(1):11-22.
PMID: 29617653
PMC: 6483372.
DOI: 10.1016/j.celrep.2018.03.040.
Wedemeyer C, Vattino L, Moglie M, Ballestero J, Maison S, Di Guilmi M
J Neurosci. 2018; 38(16):3939-3954.
PMID: 29572431
PMC: 5907056.
DOI: 10.1523/JNEUROSCI.2528-17.2018.
Synapses on sympathetic neurons and parasympathetic neurons differ in their vulnerability to diabetes.
Rudchenko A, Akude E, Cooper E
J Neurosci. 2014; 34(26):8865-74.
PMID: 24966386
PMC: 6608204.
DOI: 10.1523/JNEUROSCI.0033-14.2014.
The Concise Guide to PHARMACOLOGY 2013/14: transporters.
Alexander S, Benson H, Faccenda E, Pawson A, Sharman J, Spedding M
Br J Pharmacol. 2014; 170(8):1706-96.
PMID: 24528242
PMC: 3892292.
DOI: 10.1111/bph.12450.
SAD kinases control the maturation of nerve terminals in the mammalian peripheral and central nervous systems.
Lilley B, Krishnaswamy A, Wang Z, Kishi M, Frank E, Sanes J
Proc Natl Acad Sci U S A. 2014; 111(3):1138-43.
PMID: 24395778
PMC: 3903204.
DOI: 10.1073/pnas.1321990111.
AMPA-silent synapses in brain development and pathology.
Hanse E, Seth H, Riebe I
Nat Rev Neurosci. 2013; 14(12):839-50.
PMID: 24201185
DOI: 10.1038/nrn3642.
Methamidophos exposure during the early postnatal period of mice: immediate and late-emergent effects on the cholinergic and serotonergic systems and behavior.
Lima C, Dutra-Tavares A, Nunes F, Nunes-Freitas A, Ribeiro-Carvalho A, Filgueiras C
Toxicol Sci. 2013; 134(1):125-39.
PMID: 23596261
PMC: 3840737.
DOI: 10.1093/toxsci/kft095.
Defective presynaptic choline transport underlies hereditary motor neuropathy.
Barwick K, Wright J, Al-Turki S, McEntagart M, Nair A, Chioza B
Am J Hum Genet. 2012; 91(6):1103-7.
PMID: 23141292
PMC: 3516609.
DOI: 10.1016/j.ajhg.2012.09.019.
Substrate-induced internalization of the high-affinity choline transporter.
Okuda T, Konishi A, Misawa H, Haga T
J Neurosci. 2011; 31(42):14989-97.
PMID: 22016532
PMC: 6623556.
DOI: 10.1523/JNEUROSCI.2983-11.2011.
Reactive oxygen species inactivate neuronal nicotinic acetylcholine receptors through a highly conserved cysteine near the intracellular mouth of the channel: implications for diseases that involve oxidative stress.
Krishnaswamy A, Cooper E
J Physiol. 2011; 590(1):39-47.
PMID: 21969449
PMC: 3300044.
DOI: 10.1113/jphysiol.2011.214007.
α4β2 nicotinic acetylcholine receptors in the early postnatal mouse superior cervical ganglion.
Scholze P, Ciuraszkiewicz A, Groessl F, Orr-Urtreger A, McIntosh J, Huck S
Dev Neurobiol. 2011; 71(5):390-9.
PMID: 21485013
PMC: 3141087.
DOI: 10.1002/dneu.20870.
Motor neuron-specific overexpression of the presynaptic choline transporter: impact on motor endurance and evoked muscle activity.
Lund D, Ruggiero A, Ferguson S, Wright J, English B, Reisz P
Neuroscience. 2010; 171(4):1041-53.
PMID: 20888396
PMC: 2992794.
DOI: 10.1016/j.neuroscience.2010.09.057.
Muscarinic signaling in the cochlea: presynaptic and postsynaptic effects on efferent feedback and afferent excitability.
Maison S, Liu X, Vetter D, Eatock R, Nathanson N, Wess J
J Neurosci. 2010; 30(19):6751-62.
PMID: 20463237
PMC: 3332094.
DOI: 10.1523/JNEUROSCI.5080-09.2010.
Biochemical and functional properties of distinct nicotinic acetylcholine receptors in the superior cervical ganglion of mice with targeted deletions of nAChR subunit genes.
David R, Ciuraszkiewicz A, Simeone X, Orr-Urtreger A, Papke R, McIntosh J
Eur J Neurosci. 2010; 31(6):978-93.
PMID: 20377613
PMC: 2989642.
DOI: 10.1111/j.1460-9568.2010.07133.x.
Engineering neuronal nicotinic acetylcholine receptors with functional sensitivity to alpha-bungarotoxin: a novel alpha3-knock-in mouse.
Caffery P, Krishnaswamy A, Sanders T, Liu J, Hartlaub H, Klysik J
Eur J Neurosci. 2010; 30(11):2064-76.
PMID: 20128845
PMC: 2818262.
DOI: 10.1111/j.1460-9568.2009.07016.x.
PACAP/PAC1R signaling modulates acetylcholine release at neuronal nicotinic synapses.
Pugh P, Jayakar S, Margiotta J
Mol Cell Neurosci. 2009; 43(2):244-57.
PMID: 19958833
PMC: 2818583.
DOI: 10.1016/j.mcn.2009.11.007.
Activity of nAChRs containing alpha9 subunits modulates synapse stabilization via bidirectional signaling programs.
Murthy V, Taranda J, Elgoyhen A, Vetter D
Dev Neurobiol. 2009; 69(14):931-49.
PMID: 19790106
PMC: 2819290.
DOI: 10.1002/dneu.20753.