» Articles » PMID: 19179282

Stem Cell Fate Dictated Solely by Altered Nanotube Dimension

Overview
Specialty Science
Date 2009 Jan 31
PMID 19179282
Citations 284
Authors
Affiliations
Soon will be listed here.
Abstract

Two important goals in stem cell research are to control the cell proliferation without differentiation and to direct the differentiation into a specific cell lineage when desired. Here, we demonstrate such paths by controlling only the nanotopography of culture substrates. Altering the dimensions of nanotubular-shaped titanium oxide surface structures independently allowed either augmented human mesenchymal stem cell (hMSC) adhesion or a specific differentiation of hMSCs into osteoblasts by using only the geometric cues, absent of osteogenic inducing media. hMSC behavior in response to defined nanotube sizes revealed a very dramatic change in hMSC behavior in a relatively narrow range of nanotube dimensions. Small (approximately 30-nm diameter) nanotubes promoted adhesion without noticeable differentiation, whereas larger (approximately 70- to 100-nm diameter) nanotubes elicited a dramatic stem cell elongation (approximately 10-fold increased), which induced cytoskeletal stress and selective differentiation into osteoblast-like cells, offering a promising nanotechnology-based route for unique orthopedics-related hMSC treatments.

Citing Articles

Advanced Strategies for Enhancing the Biocompatibility and Antibacterial Properties of Implantable Structures.

Mishchenko O, Volchykhina K, Maksymov D, Manukhina O, Pogorielov M, Pavlenko M Materials (Basel). 2025; 18(4).

PMID: 40004345 PMC: 11857362. DOI: 10.3390/ma18040822.


Lateral Spacing of TiO Nanotube Coatings Modulates In Vivo Early New Bone Formation.

Negrescu A, Ionascu I, Necula M, Tudor N, Kamaleev M, Zarnescu O Biomimetics (Basel). 2025; 10(2).

PMID: 39997104 PMC: 11853438. DOI: 10.3390/biomimetics10020081.


Spatially controlled multicellular differentiation of stem cells using triple factor-releasing metal-organic framework-coated nanoline arrays.

Cho Y, Kang M, Park J, Eom Y, Kim T Nat Commun. 2025; 16(1):1389.

PMID: 39910083 PMC: 11799339. DOI: 10.1038/s41467-025-56373-0.


Nanoscale Morphologies on the Surface of Substrates/Scaffolds Enhance Chondrogenic Differentiation of Stem Cells: A Systematic Review of the Literature.

Xiao Y, Yang S, Sun Y, Sah R, Wang J, Han C Int J Nanomedicine. 2024; 19:12743-12768.

PMID: 39634196 PMC: 11615010. DOI: 10.2147/IJN.S492020.


Elucidating the Mechanism of Large-Diameter Titanium Dioxide Nanotubes in Protecting Osteoblasts Under Oxidative Stress Environment: The Role of Fibronectin and Albumin Adsorption.

Xiang Y, Lin D, Zhou Q, Luo H, Zhou Z, Wu S Int J Nanomedicine. 2024; 19:10639-10659.

PMID: 39464678 PMC: 11512530. DOI: 10.2147/IJN.S488154.


References
1.
Shankar K, Mor G, Prakasam H, Varghese O, Grimes C . Self-assembled hybrid polymer-TiO2 nanotube array heterojunction solar cells. Langmuir. 2007; 23(24):12445-9. DOI: 10.1021/la7020403. View

2.
Kislyuk V, Dimitriev O . Nanorods and nanotubes for solar cells. J Nanosci Nanotechnol. 2008; 8(1):131-48. DOI: 10.1166/jnn.2008.n16. View

3.
Mirmalek-Sani S, Tare R, Morgan S, Roach H, Wilson D, Hanley N . Characterization and multipotentiality of human fetal femur-derived cells: implications for skeletal tissue regeneration. Stem Cells. 2005; 24(4):1042-53. DOI: 10.1634/stemcells.2005-0368. View

4.
Dalby M, McCloy D, Robertson M, Agheli H, Sutherland D, Affrossman S . Osteoprogenitor response to semi-ordered and random nanotopographies. Biomaterials. 2006; 27(15):2980-7. DOI: 10.1016/j.biomaterials.2006.01.010. View

5.
Albu S, Ghicov A, Macak J, Hahn R, Schmuki P . Self-organized, free-standing TiO2 nanotube membrane for flow-through photocatalytic applications. Nano Lett. 2007; 7(5):1286-9. DOI: 10.1021/nl070264k. View