» Articles » PMID: 19167423

Identification and Characterization of Streptomyces Ghanaensis ATCC14672 Integration Sites for Three Actinophage-based Plasmids

Overview
Journal Plasmid
Date 2009 Jan 27
PMID 19167423
Citations 17
Authors
Affiliations
Soon will be listed here.
Abstract

Streptomyces ghanaensis produces the antibiotic moenomycin A, which is the only known direct inhibitor of bacterial peptidoglycan glycosyltransferases (transglycosylases). Recent progress in understanding moenomycin biosynthesis opens the door to the generation of novel moenomycins via biocombinatorial approaches. To realize the promise of such an approach, one needs better knowledge of the S. ghanaensis genome and diverse genetic tools for stable expression of recombinant constructs in this strain. In this respect, we report the intergeneric Escherichia coli-S. ghanaensis conjugal transfer of plasmids pRT801 and pSOK804 based on the actinophage BT1 and VWB integrase systems, respectively. The attB sites for these two plasmids and for pSET152 were characterized. In particular, sequencing revealed that a putative Arg-tRNA gene serves as an integration site for both phage VWB and pSAM2-like actinomycete integrative and conjugative element recently suggested to be widespread and functional in actinomycetes. The stability of the studied plasmids and their neutrality with respect to antibiotic production warrant their use for manipulations of S. ghanaensis genome.

Citing Articles

An NADH/NAD-favored aldo-keto reductase facilitates avilamycin A biosynthesis by primarily catalyzing oxidation of avilamycin C.

Zhang D, Wang Y, Tang Q, Zhang Q, Ji X, Qiu X Appl Environ Microbiol. 2024; 90(4):e0015024.

PMID: 38551341 PMC: 11022570. DOI: 10.1128/aem.00150-24.


Structural diversity, bioactivity, and biosynthesis of phosphoglycolipid family antibiotics: Recent advances.

Ostash B, Makitrynskyy R, Yushchuk O, Fedorenko V BBA Adv. 2023; 2:100065.

PMID: 37082588 PMC: 10074958. DOI: 10.1016/j.bbadva.2022.100065.


Genetic approaches to improve clorobiocin production in Streptomyces roseochromogenes NRRL 3504.

Melnyk S, Stepanyshyn A, Yushchuk O, Mandler M, Ostash I, Koshla O Appl Microbiol Biotechnol. 2022; 106(4):1543-1556.

PMID: 35147743 PMC: 9528727. DOI: 10.1007/s00253-022-11814-4.


Genetic Engineering of ATCC14672 for Improved Production of Moenomycins.

Makitrynskyy R, Tsypik O, Bechthold A Microorganisms. 2022; 10(1).

PMID: 35056478 PMC: 8778134. DOI: 10.3390/microorganisms10010030.


An Efficient Markerless Deletion System Suitable for the Industrial Strains of .

Dong J, Wei J, Li H, Zhao S, Guan W J Microbiol Biotechnol. 2021; 31(12):1722-1731.

PMID: 34489377 PMC: 9705919. DOI: 10.4014/jmb.2106.06083.


References
1.
Lovering A, de Castro L, Lim D, Strynadka N . Structural insight into the transglycosylation step of bacterial cell-wall biosynthesis. Science. 2007; 315(5817):1402-5. DOI: 10.1126/science.1136611. View

2.
Te Poele E, Bolhuis H, Dijkhuizen L . Actinomycete integrative and conjugative elements. Antonie Van Leeuwenhoek. 2008; 94(1):127-43. PMC: 2440964. DOI: 10.1007/s10482-008-9255-x. View

3.
Goldman R, Gange D . Inhibition of transglycosylation involved in bacterial peptidoglycan synthesis. Curr Med Chem. 2000; 7(8):801-20. DOI: 10.2174/0929867003374651. View

4.
Gregory M, Till R, Smith M . Integration site for Streptomyces phage phiBT1 and development of site-specific integrating vectors. J Bacteriol. 2003; 185(17):5320-3. PMC: 180994. DOI: 10.1128/JB.185.17.5320-5323.2003. View

5.
Yuan Y, Fuse S, Ostash B, Sliz P, Kahne D, Walker S . Structural analysis of the contacts anchoring moenomycin to peptidoglycan glycosyltransferases and implications for antibiotic design. ACS Chem Biol. 2008; 3(7):429-36. PMC: 2493539. DOI: 10.1021/cb800078a. View