» Articles » PMID: 19141480

Cas6 is an Endoribonuclease That Generates Guide RNAs for Invader Defense in Prokaryotes

Overview
Journal Genes Dev
Specialty Molecular Biology
Date 2009 Jan 15
PMID 19141480
Citations 292
Authors
Affiliations
Soon will be listed here.
Abstract

An RNA-based gene silencing pathway that protects bacteria and archaea from viruses and other genome invaders is hypothesized to arise from guide RNAs encoded by CRISPR loci and proteins encoded by the cas genes. CRISPR loci contain multiple short invader-derived sequences separated by short repeats. The presence of virus-specific sequences within CRISPR loci of prokaryotic genomes confers resistance against corresponding viruses. The CRISPR loci are transcribed as long RNAs that must be processed to smaller guide RNAs. Here we identified Pyrococcus furiosus Cas6 as a novel endoribonuclease that cleaves CRISPR RNAs within the repeat sequences to release individual invader targeting RNAs. Cas6 interacts with a specific sequence motif in the 5' region of the CRISPR repeat element and cleaves at a defined site within the 3' region of the repeat. The 1.8 angstrom crystal structure of the enzyme reveals two ferredoxin-like folds that are also found in other RNA-binding proteins. The predicted active site of the enzyme is similar to that of tRNA splicing endonucleases, and concordantly, Cas6 activity is metal-independent. cas6 is one of the most widely distributed CRISPR-associated genes. Our findings indicate that Cas6 functions in the generation of CRISPR-derived guide RNAs in numerous bacteria and archaea.

Citing Articles

The CRISPR-associated adenosine deaminase Cad1 converts ATP to ITP to provide antiviral immunity.

Baca C, Majumder P, Hickling J, Ye L, Teplova M, Brady S Cell. 2024; 187(25):7183-7195.e24.

PMID: 39471810 PMC: 11645235. DOI: 10.1016/j.cell.2024.10.002.


CRISPR-Cas systems in enterococci.

Cabral A, Lacerda F, Leite V, de Miranda F, da Silva A, Dos Santos B Braz J Microbiol. 2024; 55(4):3945-3957.

PMID: 39438415 PMC: 11711564. DOI: 10.1007/s42770-024-01549-x.


The CRISPR-Cas System and Clinical Applications of CRISPR-Based Gene Editing in Hematology with a Focus on Inherited Germline Predisposition to Hematologic Malignancies.

Kansal R Genes (Basel). 2024; 15(7).

PMID: 39062641 PMC: 11276294. DOI: 10.3390/genes15070863.


Repurposing Type I-A CRISPR-Cas3 for a robust diagnosis of human papillomavirus (HPV).

Hu T, Ji Q, Ke X, Zhou H, Zhang S, Ma S Commun Biol. 2024; 7(1):858.

PMID: 39003402 PMC: 11246428. DOI: 10.1038/s42003-024-06537-3.


EcCas6e-based antisense crRNA for gene repression and RNA editing in microorganisms.

Li M, Cai Z, Song S, Yue X, Lu W, Rao S Nucleic Acids Res. 2024; 52(14):8628-8642.

PMID: 38994565 PMC: 11317134. DOI: 10.1093/nar/gkae612.


References
1.
Jansen R, van Embden J, Gaastra W, Schouls L . Identification of genes that are associated with DNA repeats in prokaryotes. Mol Microbiol. 2002; 43(6):1565-75. DOI: 10.1046/j.1365-2958.2002.02839.x. View

2.
Tyson G, Banfield J . Rapidly evolving CRISPRs implicated in acquired resistance of microorganisms to viruses. Environ Microbiol. 2007; 10(1):200-7. DOI: 10.1111/j.1462-2920.2007.01444.x. View

3.
Girard A, Hannon G . Conserved themes in small-RNA-mediated transposon control. Trends Cell Biol. 2008; 18(3):136-48. PMC: 2995447. DOI: 10.1016/j.tcb.2008.01.004. View

4.
Hale C, Kleppe K, Terns R, Terns M . Prokaryotic silencing (psi)RNAs in Pyrococcus furiosus. RNA. 2008; 14(12):2572-9. PMC: 2590957. DOI: 10.1261/rna.1246808. View

5.
Mojica F, Diez-Villasenor C, Garcia-Martinez J, Soria E . Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J Mol Evol. 2005; 60(2):174-82. DOI: 10.1007/s00239-004-0046-3. View