» Articles » PMID: 19140977

Population Genetic Structure in Atlantic and Pacific Ocean Common Murres (Uria Aalge): Natural Replicate Tests of Post-Pleistocene Evolution

Overview
Journal Mol Ecol
Date 2009 Jan 15
PMID 19140977
Citations 7
Authors
Affiliations
Soon will be listed here.
Abstract

Understanding the factors that influence population differentiation in temperate taxa can be difficult because the signatures of both historic and contemporary demographics are often reflected in population genetic patterns. Fortunately, analyses based on coalescent theory can help untangle the relative influence of these historic and contemporary factors. Common murres (Uria aalge) are vagile seabirds that breed in the boreal and low arctic waters of the Northern Hemisphere. Previous analyses revealed that Atlantic and Pacific populations are genetically distinct; however, less is known about population genetic structure within ocean basins. We employed the mitochondrial control region, four microsatellite loci and four intron loci to investigate population genetic structure throughout the range of common murres. As in previous studies, we found that Atlantic and Pacific populations diverged during the Pleistocene and do not currently exchange migrants. Therefore, Atlantic and Pacific murre populations can be used as natural replicates to test mechanisms of population differentiation. While we found little population genetic structure within the Pacific, we detected significant east-west structuring among Atlantic colonies. The degree that population genetic structure reflected contemporary population demographics also differed between ocean basins. Specifically, while the low levels of population differentiation in the Pacific are at least partially due to high levels of contemporary gene flow, the east-west structuring of populations within the Atlantic appears to be the result of historic fragmentation of populations rather than restricted contemporary gene flow. The contrasting results in the Atlantic and Pacific Oceans highlight the necessity of carefully considering multilocus nonequilibrium population genetic approaches when reconstructing the demographic history of temperate Northern Hemisphere taxa.

Citing Articles

Hybridization of Atlantic puffins in the Arctic coincides with 20th-century climate change.

Kersten O, Star B, Krabberod A, Atmore L, Torresen O, Anker-Nilssen T Sci Adv. 2023; 9(40):eadh1407.

PMID: 37801495 PMC: 10558128. DOI: 10.1126/sciadv.adh1407.


Geolocator tagging links distributions in the non-breeding season to population genetic structure in a sentinel North Pacific seabird.

Hipfner J, Prill M, Studholme K, Domalik A, Tucker S, Jardine C PLoS One. 2020; 15(11):e0240056.

PMID: 33166314 PMC: 7652296. DOI: 10.1371/journal.pone.0240056.


Demographic reconstruction from ancient DNA supports rapid extinction of the great auk.

Thomas J, Carvalho G, Haile J, Rawlence N, Martin M, Ho S Elife. 2019; 8.

PMID: 31767056 PMC: 6879203. DOI: 10.7554/eLife.47509.


Additive Traits Lead to Feeding Advantage and Reproductive Isolation, Promoting Homoploid Hybrid Speciation.

Masello J, Quillfeldt P, Sandoval-Castellanos E, Alderman R, Calderon L, Cherel Y Mol Biol Evol. 2019; 36(8):1671-1685.

PMID: 31028398 PMC: 6657733. DOI: 10.1093/molbev/msz090.


Nonequilibrium Conditions Explain Spatial Variability in Genetic Structuring of Little Penguin (Eudyptula minor).

Burridge C, Peucker A, Valautham S, Styan C, Dann P J Hered. 2015; 106(3):228-37.

PMID: 25833231 PMC: 4406270. DOI: 10.1093/jhered/esv009.