» Articles » PMID: 19135893

ATPase Cycle of the Nonmotile Kinesin NOD Allows Microtubule End Tracking and Drives Chromosome Movement

Overview
Journal Cell
Publisher Cell Press
Specialty Cell Biology
Date 2009 Jan 13
PMID 19135893
Citations 38
Authors
Affiliations
Soon will be listed here.
Abstract

Segregation of nonexchange chromosomes during Drosophila melanogaster meiosis requires the proper function of NOD, a nonmotile kinesin-10. We have determined the X-ray crystal structure of the NOD catalytic domain in the ADP- and AMPPNP-bound states. These structures reveal an alternate conformation of the microtubule binding region as well as a nucleotide-sensitive relay of hydrogen bonds at the active site. Additionally, a cryo-electron microscopy reconstruction of the nucleotide-free microtubule-NOD complex shows an atypical binding orientation. Thermodynamic studies show that NOD binds tightly to microtubules in the nucleotide-free state, yet other nucleotide states, including AMPPNP, are weakened. Our pre-steady-state kinetic analysis demonstrates that NOD interaction with microtubules occurs slowly with weak activation of ADP product release. Upon rapid substrate binding, NOD detaches from the microtubule prior to the rate-limiting step of ATP hydrolysis, which is also atypical for a kinesin. We propose a model for NOD's microtubule plus-end tracking that drives chromosome movement.

Citing Articles

New insights into the mechanochemical coupling mechanism of kinesin-microtubule complexes from their high-resolution structures.

Benoit M, Hunter B, Allingham J, Sosa H Biochem Soc Trans. 2023; 51(4):1505-1520.

PMID: 37560910 PMC: 10586761. DOI: 10.1042/BST20221238.


The importance of microtubule-dependent tension in accurate chromosome segregation.

Bunning A, Gupta Jr M Front Cell Dev Biol. 2023; 11:1096333.

PMID: 36755973 PMC: 9899852. DOI: 10.3389/fcell.2023.1096333.


Change in the graphics of journal articles in the life sciences field: analysis of figures and tables in the journal "Cell".

Ariga K, Tashiro M Hist Philos Life Sci. 2022; 44(3):33.

PMID: 35918565 PMC: 9345845. DOI: 10.1007/s40656-022-00516-9.


Structural snapshots of the kinesin-2 OSM-3 along its nucleotide cycle: implications for the ATP hydrolysis mechanism.

Varela P, Chenon M, Velours C, Verhey K, Menetrey J, Gigant B FEBS Open Bio. 2021; 11(3):564-577.

PMID: 33513284 PMC: 7931232. DOI: 10.1002/2211-5463.13101.


How Kinesin-1 Utilize the Energy of Nucleotide: The Conformational Changes and Mechanochemical Coupling in the Unidirectional Motion of Kinesin-1.

Qin J, Zhang H, Geng Y, Ji Q Int J Mol Sci. 2020; 21(18).

PMID: 32972035 PMC: 7555842. DOI: 10.3390/ijms21186977.


References
1.
Gilbert S, Mackey A . Kinetics: a tool to study molecular motors. Methods. 2001; 22(4):337-54. DOI: 10.1006/meth.2000.1086. View

2.
Cheslock P, Kemp B, Boumil R, Dawson D . The roles of MAD1, MAD2 and MAD3 in meiotic progression and the segregation of nonexchange chromosomes. Nat Genet. 2005; 37(7):756-60. DOI: 10.1038/ng1588. View

3.
Matthies H, Messina L, Namba R, Greer K, Walker M, Hawley R . Mutations in the alpha-tubulin 67C gene specifically impair achiasmate segregation in Drosophila melanogaster. J Cell Biol. 1999; 147(6):1137-44. PMC: 2168102. DOI: 10.1083/jcb.147.6.1137. View

4.
Meneely P, Farago A, Kauffman T . Crossover distribution and high interference for both the X chromosome and an autosome during oogenesis and spermatogenesis in Caenorhabditis elegans. Genetics. 2002; 162(3):1169-77. PMC: 1462340. DOI: 10.1093/genetics/162.3.1169. View

5.
Terwilliger T . Maximum-likelihood density modification. Acta Crystallogr D Biol Crystallogr. 2000; 56(Pt 8):965-72. PMC: 2792768. DOI: 10.1107/s0907444900005072. View