Govindjee , Prince R, Ort D
Photosynth Res. 2015; 127(2):237-56.
PMID: 26202746
DOI: 10.1007/s11120-015-0174-1.
Ciriaco F, Tangorra R, Antonucci A, Giotta L, Agostiano A, Trotta M
Eur Biophys J. 2015; 44(3):183-92.
PMID: 25687225
DOI: 10.1007/s00249-015-1013-1.
Gao J, Wraight C
Photosynth Res. 2014; 26(3):171-9.
PMID: 24420582
DOI: 10.1007/BF00033130.
Huzisige H, Ke B
Photosynth Res. 2013; 38(2):185-209.
PMID: 24317915
DOI: 10.1007/BF00146418.
Maroti P
Photosynth Res. 2013; 37(1):1-17.
PMID: 24317650
DOI: 10.1007/BF02185435.
Roderick K. Clayton: a life, and some personal recollections.
Wraight C
Photosynth Res. 2013; 120(1-2):9-26.
PMID: 24254320
DOI: 10.1007/s11120-013-9948-5.
George Feher: a pioneer in reaction center research.
Okamura M
Photosynth Res. 2013; 120(1-2):29-42.
PMID: 24104959
DOI: 10.1007/s11120-013-9927-x.
THE ROLE OF THE QUINONE POOL IN THE CYCLIC ELECTRON-TRANSFER CHAIN OF RHODOPSEUDOMONAS SPHAEROIDES: A MODIFIED Q-CYCLE MECHANISM.
Crofts A, Meinhardt S, Jones K, Snozzi M
Biochim Biophys Acta. 2011; 723(2):202-218.
PMID: 21494412
PMC: 3074349.
DOI: 10.1016/0005-2728(83)90120-2.
The semiquinone-iron complex of photosystem II: structural insights from ESR and theoretical simulation; evidence that the native ligand to the non-heme iron is carbonate.
Cox N, Jin L, Jaszewski A, Smith P, Krausz E, Rutherford A
Biophys J. 2009; 97(7):2024-33.
PMID: 19804734
PMC: 2756360.
DOI: 10.1016/j.bpj.2009.06.033.
The redox midpoint potential of the primary quinone of reaction centers in chromatophores of Rhodobacter sphaeroides is pH independent.
Maroti P, Wraight C
Eur Biophys J. 2008; 37(7):1207-17.
PMID: 18351330
DOI: 10.1007/s00249-008-0301-4.
Determination of oxygen emission and uptake in leaves by pulsed, time resolved photoacoustics.
Mauzerall D
Plant Physiol. 1990; 94(1):278-83.
PMID: 16667697
PMC: 1077221.
DOI: 10.1104/pp.94.1.278.
Mode of inhibition of electron transport by orthophenanthroline in chromatophores and reaction centers of Rhodopseudomonas sphaeroides.
Vermeglio A, Martinet T, Clayton R
Proc Natl Acad Sci U S A. 1980; 77(4):1809-13.
PMID: 16592799
PMC: 348597.
DOI: 10.1073/pnas.77.4.1809.
Chlorophyll a fluorescence induction kinetics in leaves predicted from a model describing each discrete step of excitation energy and electron transfer associated with Photosystem II.
Zhu X, Govindjee , Baker N, deSturler E, Ort D, Long S
Planta. 2006; 223(1):114-133.
PMID: 16411287
DOI: 10.1007/s00425-005-0064-4.
Time line of discoveries: anoxygenic bacterial photosynthesis.
Gest H, Blankenship R
Photosynth Res. 2005; 80(1-3):59-70.
PMID: 16328810
DOI: 10.1023/B:PRES.0000030448.24695.ec.
The two-electron gate in photosynthetic bacteria.
Vermeglio A
Photosynth Res. 2005; 73(1-3):83-6.
PMID: 16245107
DOI: 10.1023/A:1020429114745.
Electron donors and acceptors in the initial steps of photosynthesis in purple bacteria: a personal account.
Parson W
Photosynth Res. 2005; 76(1-3):81-92.
PMID: 16228568
DOI: 10.1023/A:1024983926707.
Characterization of a symmetrized mutant RC with 42 residues from the QA site replacing residues in the Q(B) site.
Li J, Coleman W, Youvan D, Gunner M
Photosynth Res. 2005; 64(1):41-52.
PMID: 16228442
DOI: 10.1023/A:1026531925602.
The role of c-type cytochromes in catalyzing oxidative and photosynthetic electron transport in the dual functional plasmamembrane of facultative phototrophs.
Zannoni D, Daldal F
Arch Microbiol. 1993; 160(6):413-23.
PMID: 8297207
DOI: 10.1007/BF00245301.
Proton conduction within the reaction centers of Rhodobacter capsulatus: the electrostatic role of the protein.
Maroti P, Hanson D, Baciou L, Schiffer M, Sebban P
Proc Natl Acad Sci U S A. 1994; 91(12):5617-21.
PMID: 8202536
PMC: 44047.
DOI: 10.1073/pnas.91.12.5617.
The electronic structure of Fe2+ in reaction centers from Rhodopseudomonas sphaeroides. III. EPR measurements of the reduced acceptor complex.
BUTLER W, Calvo R, Fredkin D, Isaacson R, Okamura M, Feher G
Biophys J. 1984; 45(5):947-73.
PMID: 6329347
PMC: 1434980.
DOI: 10.1016/S0006-3495(84)84241-1.