» Articles » PMID: 19079242

Tunable Magnetic Exchange Interactions in Manganese-doped Inverted Core-shell ZnSe-CdSe Nanocrystals

Overview
Journal Nat Mater
Date 2008 Dec 17
PMID 19079242
Citations 19
Authors
Affiliations
Soon will be listed here.
Abstract

Magnetic doping of semiconductor nanostructures is actively pursued for applications in magnetic memory and spin-based electronics. Central to these efforts is a drive to control the interaction strength between carriers (electrons and holes) and the embedded magnetic atoms. In this respect, colloidal nanocrystal heterostructures provide great flexibility through growth-controlled 'engineering' of electron and hole wavefunctions in individual nanocrystals. Here, we demonstrate a widely tunable magnetic sp-d exchange interaction between electron-hole excitations (excitons) and paramagnetic manganese ions using 'inverted' core-shell nanocrystals composed of Mn(2+)-doped ZnSe cores overcoated with undoped shells of narrower-gap CdSe. Magnetic circular dichroism studies reveal giant Zeeman spin splittings of the band-edge exciton that, surprisingly, are tunable in both magnitude and sign. Effective exciton g-factors are controllably tuned from -200 to +30 solely by increasing the CdSe shell thickness, demonstrating that strong quantum confinement and wavefunction engineering in heterostructured nanocrystal materials can be used to manipulate carrier-Mn(2+) wavefunction overlap and the sp-d exchange parameters themselves.

Citing Articles

Role of Exciton Diffusion in the Efficiency of Mn Dopant Emission in Two-Dimensional Perovskites.

Magdaleno A, Kshirsagar A, Melendez M, Kuruppu U, Suurmond J, Cutler M ACS Nanosci Au. 2025; 5(1):29-36.

PMID: 39990111 PMC: 11843506. DOI: 10.1021/acsnanoscienceau.4c00047.


Inverted CdSe/PbSe Core/Shell Quantum Dots with Electrically Accessible Photocarriers.

Sayevich V, Kim W, Robinson Z, Kozlov O, Livache C, Ahn N ACS Energy Lett. 2025; 10(2):1062-1071.

PMID: 39974327 PMC: 11834150. DOI: 10.1021/acsenergylett.4c03502.


Spin-polarized lasing in manganese doped perovskite microcrystals.

Li P, Zhou Z, Ran G, Zhang T, Jiang Z, Liu H Nat Commun. 2024; 15(1):10880.

PMID: 39738058 PMC: 11685851. DOI: 10.1038/s41467-024-55234-6.


Exploring magneto-optic properties of colloidal two-dimensional copper-doped CdSe nanoplatelets.

Dutta A, Almutairi A, Joseph J, Baev A, Petrou A, Zeng H Nanophotonics. 2024; 11(22):5143-5152.

PMID: 39634293 PMC: 11501793. DOI: 10.1515/nanoph-2022-0503.


Dielectric and Wavefunction Engineering of Electron Spin Lifetime in Colloidal Nanoplatelet Heterostructures.

Li Y, Wang L, Xiang D, Zhu J, Wu K Adv Sci (Weinh). 2024; 11(12):e2306518.

PMID: 38234238 PMC: 10966543. DOI: 10.1002/advs.202306518.


References
1.
Myers R, Poggio M, Stern N, Gossard A, Awschalom D . Antiferromagnetic s-d exchange coupling in GaMnAs. Phys Rev Lett. 2005; 95(1):017204. DOI: 10.1103/PhysRevLett.95.017204. View

2.
Ohno H, Chiba D, Matsukura F, Omiya T, Abe E, Dietl T . Electric-field control of ferromagnetism. Nature. 2001; 408(6815):944-6. DOI: 10.1038/35050040. View

3.
Archer P, Santangelo S, Gamelin D . Inorganic cluster syntheses of TM2+-doped quantum dots (CdSe, CdS, CdSe/CdS): physical property dependence on dopant locale. J Am Chem Soc. 2007; 129(31):9808-18. DOI: 10.1021/ja072436l. View

4.
Norris D, Efros A, Erwin S . Doped nanocrystals. Science. 2008; 319(5871):1776-9. DOI: 10.1126/science.1143802. View

5.
Archer P, Santangelo S, Gamelin D . Direct Observation of sp-d exchange interactions in colloidal Mn2+- and Co2+-doped CdSe quantum dots. Nano Lett. 2007; 7(4):1037-43. DOI: 10.1021/nl0702362. View