» Articles » PMID: 19074968

Rapid and Local Autoregulation of Cerebrovascular Blood Flow: a Deep-brain Imaging Study in the Mouse

Overview
Journal J Physiol
Specialty Physiology
Date 2008 Dec 17
PMID 19074968
Citations 4
Authors
Affiliations
Soon will be listed here.
Abstract

The brain obtains energy by keeping the cerebral blood flow constant against unexpected changes in systemic blood pressure. Although this homeostatic mechanism is widely known as cerebrovascular autoregulation, it is not understood how widely and how robustly it works in the brain. Using a needle-like objective lens designed for deep-tissue imaging, we quantified the degree of autoregulation in the mouse hippocampus with single-capillary resolution. On average, hippocampal blood flow exhibited autoregulation over a comparatively broad range of arterial blood pressure and did not significantly respond to pressure changes induced by the pharmacological activation of autonomic nervous system receptors, whereas peripheral tissues showed linear blood flow changes. At the level of individual capillaries, however, about 40% of hippocampal capillaries did not undergo rapid autoregulation. This heterogeneity suggests the presence of a local baroreflex system to implement cerebral autoregulation.

Citing Articles

Beyond neurovascular coupling, role of astrocytes in the regulation of vascular tone.

Filosa J, Morrison H, Iddings J, Du W, Kim K Neuroscience. 2015; 323:96-109.

PMID: 25843438 PMC: 4592693. DOI: 10.1016/j.neuroscience.2015.03.064.


Monitoring of systemic and hepatic hemodynamic parameters in mice.

Xie C, Wei W, Zhang T, Dirsch O, Dahmen U J Vis Exp. 2014; (92):e51955.

PMID: 25350047 PMC: 4692415. DOI: 10.3791/51955.


Large-scale calcium waves traveling through astrocytic networks in vivo.

Kuga N, Sasaki T, Takahara Y, Matsuki N, Ikegaya Y J Neurosci. 2011; 31(7):2607-14.

PMID: 21325528 PMC: 6623677. DOI: 10.1523/JNEUROSCI.5319-10.2011.


Continuous estimates of dynamic cerebral autoregulation during transient hypocapnia and hypercapnia.

Dineen N, Brodie F, Robinson T, Panerai R J Appl Physiol (1985). 2009; 108(3):604-13.

PMID: 20035062 PMC: 2838633. DOI: 10.1152/japplphysiol.01157.2009.

References
1.
Helmchen F, Fee M, Tank D, Denk W . A miniature head-mounted two-photon microscope. high-resolution brain imaging in freely moving animals. Neuron. 2001; 31(6):903-12. DOI: 10.1016/s0896-6273(01)00421-4. View

2.
Villringer A, Them A, Lindauer U, Einhaupl K, Dirnagl U . Capillary perfusion of the rat brain cortex. An in vivo confocal microscopy study. Circ Res. 1994; 75(1):55-62. DOI: 10.1161/01.res.75.1.55. View

3.
Hamel E . Perivascular nerves and the regulation of cerebrovascular tone. J Appl Physiol (1985). 2006; 100(3):1059-64. DOI: 10.1152/japplphysiol.00954.2005. View

4.
Weber B, Keller A, Reichold J, Logothetis N . The microvascular system of the striate and extrastriate visual cortex of the macaque. Cereb Cortex. 2008; 18(10):2318-30. DOI: 10.1093/cercor/bhm259. View

5.
Roman G, Erkinjuntti T, Wallin A, Pantoni L, Chui H . Subcortical ischaemic vascular dementia. Lancet Neurol. 2003; 1(7):426-36. DOI: 10.1016/s1474-4422(02)00190-4. View