» Articles » PMID: 19073779

Tissue Specificity and Evolution of Meristematic WOX3 Function

Overview
Journal Plant Physiol
Specialty Physiology
Date 2008 Dec 17
PMID 19073779
Citations 61
Authors
Affiliations
Soon will be listed here.
Abstract

The WUSCHEL-related homeobox (WOX) gene PRESSED FLOWER1 (PRS1) performs a conserved function during lateral organ development in Arabidopsis (Arabidopsis thaliana). Expressed in the periphery of the shoot meristem, PRS1 recruits founder cells that form lateral domains of vegetative and floral organs. Null mutations in PRS1 cause the deletion of lateral stipules from leaves and of lateral sepals and stamens from flowers. Although PRS1 expression is described in the L1 layer, PRS1 recruits founder cells from all meristem layers. The mechanism of non-cell autonomous PRS1 function and the evolution of disparate WOX gene functions are investigated herein. Meristem layer-specific promoters reveal that both L1 and L1-L2 expression of PRS1 fail to fully rescue PRS1 function, and PRS1 protein does not traffic laterally or transversely between shoot meristem layers. PRS1 protein accumulates within all meristematic cell layers (L1-L2-L3) when expressed from the native promoter, presumably due to low-level transcription in the L2 and L3 layers. When driven from the PRS1 promoter, full rescue of vegetative and floral prs1 mutant phenotypes is provided by WUSCHEL1 (WUS1), which is normally expressed in the stem cell organizing center of shoot meristems. The data reveal that WUS1 and PRS1 can engage in equivalent protein-protein interactions and direct transcription of conserved target genes, suggesting that their subfunctionalization has evolved primarily via diverse promoter specificity. Unexpectedly, these results also suggest that meristematic stem cells and lateral organ founder cells are intrinsically similar and formed via equivalent processes such that their ultimate fate is dependent upon stage-specific and domain-specific positional signaling.

Citing Articles

Evolutionary Insight and Expression Pattern of WUSCHEL-Related Homebox Genes of .

Wang J, Zhang Y, Ren Y, Manzoor M, Yi S, Song C Food Sci Nutr. 2025; 13(3):e70057.

PMID: 40008241 PMC: 11847974. DOI: 10.1002/fsn3.70057.


Transcriptome-wide identification and characterization of WUSCHEL-related homeobox (WOX) gene family in Pinus yunnanensis.

Xu J, Hu Z, Chen S, Tang J, Chen L, Chen P BMC Genomics. 2025; 26(1):99.

PMID: 39901066 PMC: 11789396. DOI: 10.1186/s12864-025-11271-z.


The Identification and Characterization of WOX Family Genes in Reveals Their Potential Roles in Somatic Embryogenesis and the Cold-Stress Response.

Dong X, Gao J, Jiang M, Tao Y, Chen X, Yang X Int J Mol Sci. 2024; 25(23).

PMID: 39684742 PMC: 11641659. DOI: 10.3390/ijms252313031.


Plant Growth Regulators: An Overview of WOX Gene Family.

Rasheed H, Shi L, Winarsih C, Jakada B, Chai R, Huang H Plants (Basel). 2024; 13(21).

PMID: 39520025 PMC: 11548557. DOI: 10.3390/plants13213108.


The WUSCHEL-related homeobox transcription factor negatively regulates fruit spine morphogenesis in cucumber ( L.).

Xu S, Wang Y, Yang S, Fan S, Shi K, Wang F Hortic Res. 2024; 11(8):uhae163.

PMID: 39108588 PMC: 11298622. DOI: 10.1093/hr/uhae163.


References
1.
Sessions A, Weigel D, Yanofsky M . The Arabidopsis thaliana MERISTEM LAYER 1 promoter specifies epidermal expression in meristems and young primordia. Plant J. 1999; 20(2):259-63. DOI: 10.1046/j.1365-313x.1999.00594.x. View

2.
Clough S, Bent A . Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 1999; 16(6):735-43. DOI: 10.1046/j.1365-313x.1998.00343.x. View

3.
Park S, Zheng Z, Oppenheimer D, Hauser B . The PRETTY FEW SEEDS2 gene encodes an Arabidopsis homeodomain protein that regulates ovule development. Development. 2005; 132(4):841-9. DOI: 10.1242/dev.01654. View

4.
Jenik P, Irish V . Regulation of cell proliferation patterns by homeotic genes during Arabidopsis floral development. Development. 2000; 127(6):1267-76. DOI: 10.1242/dev.127.6.1267. View

5.
Henderson D, Zhang X, Brooks 3rd L, Scanlon M . RAGGED SEEDLING2 is required for expression of KANADI2 and REVOLUTA homologues in the maize shoot apex. Genesis. 2006; 44(8):372-82. DOI: 10.1002/dvg.20223. View