» Articles » PMID: 19005636

Tackling the Characterization of Canine Chromosomal Breakpoints with an Integrated In-situ/in-silico Approach: the Canine PAR and PAB

Overview
Journal Chromosome Res
Date 2008 Nov 14
PMID 19005636
Citations 15
Authors
Affiliations
Soon will be listed here.
Abstract

The domestic dog continues to represent an influential model organism for comparative biomedical research owing to the numerous genetic and pathophysiological similarities shared between human and dog diseases. The combined availability of a high-quality genome assembly and a 1 Mb-resolution genome-assembly integrated bacterial artificial chromosome (BAC) panel now provides the essential resources to combine cytogenetic and computational analyses to determine the precise locations of chromosome breakpoint regions within aberrant karyotypes. In this study we demonstrate the synergy of using a such a combined in-situ/in-silico approach to define chromosome breakpoints using the naturally occurring breakpoint present on all canine X chromosomes--the pseudoautosomal breakpoint (PAB). In so doing we have further characterized the canine pseudoautosomal region (PAR) to extend approximately 6.6 Mb from the telomeric end of CFA Xp and established that the canine PAB is contained within a 2 kb region. Our characterization of the canine PAR allowed for the comparative study of gene content across previously defined mammalian PARs and indicates that the canine PAB is contained with the gene Shroom2. The future application of the approach demonstrated in this study will prove useful when seeking to identify the genomic sequences surrounding recurrent chromosome breakpoints present in canine cancers.

Citing Articles

Expression and high levels of insertional polymorphism of an endogenous gammaretrovirus lineage in dogs.

Jarosz A, Pendleton A, Lashbrook M, Cech E, Altieri M, Kunch A PLoS Genet. 2023; 19(12):e1011083.

PMID: 38055724 PMC: 10727363. DOI: 10.1371/journal.pgen.1011083.


Genome sequencing of 2000 canids by the Dog10K consortium advances the understanding of demography, genome function and architecture.

Meadows J, Kidd J, Wang G, Parker H, Schall P, Bianchi M Genome Biol. 2023; 24(1):187.

PMID: 37582787 PMC: 10426128. DOI: 10.1186/s13059-023-03023-7.


Bayesian model and selection signature analyses reveal risk factors for canine atopic dermatitis.

Tengvall K, Sundstrom E, Wang C, Bergvall K, Wallerman O, Pederson E Commun Biol. 2022; 5(1):1348.

PMID: 36482174 PMC: 9731970. DOI: 10.1038/s42003-022-04279-8.


Development of a Genome-Wide Oligonucleotide Microarray Platform for Detection of DNA Copy Number Aberrations in Feline Cancers.

Thomas R, Pontius J, Borst L, Breen M Vet Sci. 2020; 7(3).

PMID: 32645884 PMC: 7560183. DOI: 10.3390/vetsci7030088.


New insights into mammalian sex chromosome structure and evolution using high-quality sequences from bovine X and Y chromosomes.

Liu R, Low W, Tearle R, Koren S, Ghurye J, Rhie A BMC Genomics. 2019; 20(1):1000.

PMID: 31856728 PMC: 6923926. DOI: 10.1186/s12864-019-6364-z.


References
1.
Thomas R, Scott A, Langford C, Fosmire S, Jubala C, Lorentzen T . Construction of a 2-Mb resolution BAC microarray for CGH analysis of canine tumors. Genome Res. 2005; 15(12):1831-7. PMC: 1356122. DOI: 10.1101/gr.3825705. View

2.
Bussell J, Pearson N, Kanda R, Filatov D, Lahn B . Human polymorphism and human-chimpanzee divergence in pseudoautosomal region correlate with local recombination rate. Gene. 2005; 368:94-100. DOI: 10.1016/j.gene.2005.10.020. View

3.
Filatov D, Gerrard D . High mutation rates in human and ape pseudoautosomal genes. Gene. 2003; 317(1-2):67-77. DOI: 10.1016/s0378-1119(03)00697-8. View

4.
Mangs A, Morris B . The Human Pseudoautosomal Region (PAR): Origin, Function and Future. Curr Genomics. 2008; 8(2):129-36. PMC: 2435358. DOI: 10.2174/138920207780368141. View

5.
Langford C, Fischer P, Binns M, Holmes N, Carter N . Chromosome-specific paints from a high-resolution flow karyotype of the dog. Chromosome Res. 1996; 4(2):115-23. DOI: 10.1007/BF02259704. View