» Articles » PMID: 18997628

Microphysiology of Epileptiform Activity in Human Neocortex

Overview
Specialties Neurology
Physiology
Date 2008 Nov 11
PMID 18997628
Citations 74
Authors
Affiliations
Soon will be listed here.
Abstract

The authors report the use of dense two-dimensional microelectrode array recordings to characterize fine resolution electrocortical activity ("microEEG") in epileptogenic human cortex. A 16-mm(2) 96 microelectrode array with 400-mum interelectrode spacing was implanted in five patients undergoing invasive EEG monitoring for medically refractory epilepsy. High spatial resolution data from the array were analyzed in conjunction with simultaneously acquired data from standard intracranial electrode grids and strips. microEEG recorded from within the epileptogenic zone demonstrates discharges resembling both interictal epileptiform activity ("microdischarges") and electrographic seizures ("microseizures") but confined to cortical regions as small as 200 microm(2). In two patients, this activity appeared to be involved in the initiation or propagation of electrographic seizures. The authors hypothesize that microdischarges and microseizures are generated by small cortical domains that form the substrate of epileptogenic cortex and play important roles in seizure initiation and propagation.

Citing Articles

Direct visualization of microwires in hybrid depth electrodes using high-resolution photon-counting CT.

Smeijers S, Coudyzer W, Keirse E, Bougou V, Decramer T, Theys T Epilepsia Open. 2024; 9(6):2518-2521.

PMID: 39487958 PMC: 11633708. DOI: 10.1002/epi4.13080.


Comparison of Continuous Intracortical and Scalp Electroencephalography in Comatose Patients with Acute Brain Injury.

Fernandez-Torre J, Hernandez-Hernandez M, Cherchi M, Mato-Manas D, Marco De Lucas E, Gomez-Ruiz E Neurocrit Care. 2024; 41(3):903-915.

PMID: 38918336 DOI: 10.1007/s12028-024-02016-z.


Circumscribing Laser Cuts Attenuate Seizure Propagation in a Mouse Model of Focal Epilepsy.

Lieberman S, Rivera D, Morton R, Hingorani A, Southard T, Johnson L Adv Sci (Weinh). 2024; 11(29):e2300747.

PMID: 38810146 PMC: 11304327. DOI: 10.1002/advs.202300747.


High-resolution neural recordings improve the accuracy of speech decoding.

Duraivel S, Rahimpour S, Chiang C, Trumpis M, Wang C, Barth K Nat Commun. 2023; 14(1):6938.

PMID: 37932250 PMC: 10628285. DOI: 10.1038/s41467-023-42555-1.


A novel method for dynamically altering the surface area of intracranial EEG electrodes.

Sindhu K, Ngo D, Ombao H, Olaya J, Shrey D, Lopour B J Neural Eng. 2023; 20(2).

PMID: 36720162 PMC: 9990369. DOI: 10.1088/1741-2552/acb79f.


References
1.
Horton J, Hocking D . Intrinsic variability of ocular dominance column periodicity in normal macaque monkeys. J Neurosci. 1996; 16(22):7228-39. PMC: 6578935. View

2.
Worrell G, Gardner A, Matt Stead S, Hu S, Goerss S, Cascino G . High-frequency oscillations in human temporal lobe: simultaneous microwire and clinical macroelectrode recordings. Brain. 2008; 131(Pt 4):928-37. PMC: 2760070. DOI: 10.1093/brain/awn006. View

3.
Tae W, Joo E, Kim J, Han S, Suh Y, Kim B . Cerebral perfusion changes in mesial temporal lobe epilepsy: SPM analysis of ictal and interictal SPECT. Neuroimage. 2004; 24(1):101-10. DOI: 10.1016/j.neuroimage.2004.08.005. View

4.
Hochberg L, Serruya M, Friehs G, Mukand J, Saleh M, Caplan A . Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature. 2006; 442(7099):164-71. DOI: 10.1038/nature04970. View

5.
Bartfeld E, Grinvald A . Relationships between orientation-preference pinwheels, cytochrome oxidase blobs, and ocular-dominance columns in primate striate cortex. Proc Natl Acad Sci U S A. 1992; 89(24):11905-9. PMC: 50666. DOI: 10.1073/pnas.89.24.11905. View