» Articles » PMID: 18986507

Functional Genomic Analysis of Drug Sensitivity Pathways to Guide Adjuvant Strategies in Breast Cancer

Overview
Specialty Oncology
Date 2008 Nov 7
PMID 18986507
Citations 10
Authors
Affiliations
Soon will be listed here.
Abstract

The widespread introduction of high throughput RNA interference screening technology has revealed tumour drug sensitivity pathways to common cytotoxics such as paclitaxel, doxorubicin and 5-fluorouracil, targeted agents such as trastuzumab and inhibitors of AKT and Poly(ADP-ribose) polymerase (PARP) as well as endocrine therapies such as tamoxifen. Given the limited power of microarray signatures to predict therapeutic response in associative studies of small clinical trial cohorts, the use of functional genomic data combined with expression or sequence analysis of genes and microRNAs implicated in drug response in human tumours may provide a more robust method to guide adjuvant treatment strategies in breast cancer that are transferable across different expression platforms and patient cohorts.

Citing Articles

Use of CRISPR-based screens to identify mechanisms of chemotherapy resistance.

Alyateem G, Wade H, Bickert A, Lipsey C, Mondal P, Smith M Cancer Gene Ther. 2023; 30(8):1043-1050.

PMID: 37029320 PMC: 10722205. DOI: 10.1038/s41417-023-00608-z.


Kinase shRNA screening reveals that TAOK3 enhances microtubule-targeted drug resistance of breast cancer cells via the NF-κB signaling pathway.

Lai T, Fang C, Jan Y, Hsieh H, Yang Y, Liu C Cell Commun Signal. 2020; 18(1):164.

PMID: 33087151 PMC: 7579951. DOI: 10.1186/s12964-020-00600-2.


New tools for old drugs: Functional genetic screens to optimize current chemotherapy.

Gerhards N, Rottenberg S Drug Resist Updat. 2018; 36:30-46.

PMID: 29499836 PMC: 5844649. DOI: 10.1016/j.drup.2018.01.001.


Prediction of individual response to anticancer therapy: historical and future perspectives.

Unger F, Witte I, David K Cell Mol Life Sci. 2014; 72(4):729-57.

PMID: 25387856 PMC: 4309902. DOI: 10.1007/s00018-014-1772-3.


Evolving concepts in cancer therapy through targeting sphingolipid metabolism.

Truman J, Garcia-Barros M, Obeid L, Hannun Y Biochim Biophys Acta. 2014; 1841(8):1174-88.

PMID: 24384461 PMC: 4221100. DOI: 10.1016/j.bbalip.2013.12.013.


References
1.
Blower P, Chung J, Verducci J, Lin S, Park J, Dai Z . MicroRNAs modulate the chemosensitivity of tumor cells. Mol Cancer Ther. 2008; 7(1):1-9. DOI: 10.1158/1535-7163.MCT-07-0573. View

2.
Carter S, Eklund A, Kohane I, Harris L, Szallasi Z . A signature of chromosomal instability inferred from gene expression profiles predicts clinical outcome in multiple human cancers. Nat Genet. 2006; 38(9):1043-8. DOI: 10.1038/ng1861. View

3.
Schetter A, Leung S, Sohn J, Zanetti K, Bowman E, Yanaihara N . MicroRNA expression profiles associated with prognosis and therapeutic outcome in colon adenocarcinoma. JAMA. 2008; 299(4):425-36. PMC: 2614237. DOI: 10.1001/jama.299.4.425. View

4.
Ein-Dor L, Kela I, Getz G, Givol D, Domany E . Outcome signature genes in breast cancer: is there a unique set?. Bioinformatics. 2004; 21(2):171-8. DOI: 10.1093/bioinformatics/bth469. View

5.
McShane L, Altman D, Sauerbrei W, Taube S, Gion M, Clark G . REporting recommendations for tumour MARKer prognostic studies (REMARK). Br J Cancer. 2005; 93(4):387-91. PMC: 2361579. DOI: 10.1038/sj.bjc.6602678. View