» Articles » PMID: 18978076

Abundances of Hyperthermophilic Autotrophic Fe(III) Oxide Reducers and Heterotrophs in Hydrothermal Sulfide Chimneys of the Northeastern Pacific Ocean

Overview
Date 2008 Nov 4
PMID 18978076
Citations 14
Authors
Affiliations
Soon will be listed here.
Abstract

The abundances of hyperthermophilic heterotrophs, methanogens, and autotrophic reducers of amorphous Fe(III) oxide in 18 samples of deep-sea hydrothermal vent sulfide chimneys of the Endeavour Segment were measured. The results indicate that conditions favor the growth of iron reducers toward the interiors of these deposits and that of heterotrophs toward the outer surfaces near high-temperature polychaete worms (Paralvinella sulfincola).

Citing Articles

Fe(III) (oxyhydr)oxide reduction by the thermophilic iron-reducing bacterium .

Sklute E, Leopo D, Neat K, Livi K, Darby Dyar M, Holden J Front Microbiol. 2023; 14:1272245.

PMID: 37928658 PMC: 10622975. DOI: 10.3389/fmicb.2023.1272245.


Formate and hydrogen in hydrothermal vents and their use by extremely thermophilic methanogens and heterotrophs.

Holden J, Sistu H Front Microbiol. 2023; 14:1093018.

PMID: 36950162 PMC: 10025317. DOI: 10.3389/fmicb.2023.1093018.


Precipitation of greigite and pyrite induced by Thermococcales: an advantage to live in Fe- and S-rich environments?.

Gorlas A, Mariotte T, Morey L, Truong C, Bernard S, Guigner J Environ Microbiol. 2022; 24(2):626-642.

PMID: 35102700 PMC: 9306673. DOI: 10.1111/1462-2920.15915.


Microbe-Mineral Interaction and Novel Proteins for Iron Oxide Mineral Reduction in the Hyperthermophilic Crenarchaeon Pyrodictium delaneyi.

Kashyap S, Holden J Appl Environ Microbiol. 2021; 87(6).

PMID: 33419739 PMC: 8105010. DOI: 10.1128/AEM.02330-20.


Microbially Mediated Hydrogen Cycling in Deep-Sea Hydrothermal Vents.

Adam N, Perner M Front Microbiol. 2018; 9:2873.

PMID: 30532749 PMC: 6265342. DOI: 10.3389/fmicb.2018.02873.


References
1.
Holden J, Takai K, Summit M, Bolton S, Zyskowski J, Baross J . Diversity among three novel groups of hyperthermophilic deep-sea Thermococcus species from three sites in the northeastern Pacific Ocean. FEMS Microbiol Ecol. 2001; 36(1):51-60. DOI: 10.1111/j.1574-6941.2001.tb00825.x. View

2.
Kashefi K, Tor J, Holmes D, Gaw Van Praagh C, Reysenbach A, Lovley D . Geoglobus ahangari gen. nov., sp. nov., a novel hyperthermophilic archaeon capable of oxidizing organic acids and growing autotrophically on hydrogen with Fe(III) serving as the sole electron acceptor. Int J Syst Evol Microbiol. 2002; 52(Pt 3):719-728. DOI: 10.1099/00207713-52-3-719. View

3.
Amend J, Shock E . Energetics of overall metabolic reactions of thermophilic and hyperthermophilic Archaea and bacteria. FEMS Microbiol Rev. 2001; 25(2):175-243. DOI: 10.1111/j.1574-6976.2001.tb00576.x. View

4.
Schrenk M, Kelley D, Delaney J, Baross J . Incidence and diversity of microorganisms within the walls of an active deep-sea sulfide chimney. Appl Environ Microbiol. 2003; 69(6):3580-92. PMC: 161516. DOI: 10.1128/AEM.69.6.3580-3592.2003. View

5.
Ding K, Seyfried Jr W . In situ measurement of pH and dissolved H2 in mid-ocean ridge hydrothermal fluids at elevated temperatures and pressures. Chem Rev. 2007; 107(2):601-22. DOI: 10.1021/cr050367s. View